- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用 sklearn 的特征提取 RFECV,它有一个参数“n_jobs”来分配核心使用。
我有一个英特尔 i5-8400 CPU @ 2.80GHz(6 核)
我正在运行 ubuntu 16.04(64 位)。 python、sklearn等最新版本
我有 2 个同时运行的 jupyter 笔记本。我使用 RFECV 中的 n_jobs 参数为一个分配了 5 个内核,为另一个分配了 1 个内核。
这是调用 5 个内核的代码,它没有按预期工作:
logreg = LogisticRegression()
rfe = RFECV(logreg, step=3, cv=10, n_jobs=5)
rfe = rfe.fit(X_lab, y_lab)
y_pred=rfe.predict(X_lab),
无论如何,当我 sleep 时,使用 linux“top”命令查看 CPU 使用情况,它显示所有 6 个内核都处于事件状态并且几乎处于 100% 使用率(这是我的预期)。然而,当我醒来时,只有 2 个在运行,正如您从 linux 上“top”调用的前 3 行中看到的那样:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
10790 ted 20 0 1489568 416948 37064 R 100.0 1.7 2456:08 python3.6
781 ted 20 0 1621052 392824 36348 R 99.7 1.6 13:04.46 python3.6
937 root 20 0 481136 106528 83944 S 8.0 0.4 42:49.95 Xorg
我的 CPU 中有一个非常好的液体冷却系统,有足够的 RAM,而且我没有超频。我是否让我的 CPU 负担过重,或者这可能是关于如何在 sklearn 上实现并行性,或者完全是其他什么?有任何想法吗?
最佳答案
所以我认为这只是 sklearn 在算法中那个点的实现。该算法在上一篇文章的大约一个小时内完成运行,并且它显然比 n_jobs=1 版本运行得更快。我再次运行它,它显示所有内核都按应有的方式工作,所以我相信它可以说是“逐渐减少”并完成了算法的计算量大的部分。 . .
关于linux - 为什么 sklearn 中的核心事件在时间 RFECV/LogisticRegression 后减少,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50647767/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!