gpt4 book ai didi

c++ - boost::graph 中的 ColorMap 用于 metric_tsp_approx 的隐式图

转载 作者:太空宇宙 更新时间:2023-11-04 11:46:32 27 4
gpt4 key购买 nike

我正在尝试完成以下任务:有一个函数 computeTspTour(size, start, distance) 可以让我得到从 start 开始通过 size 许多顶点的最短路径的近似值。这里,distance 是一个函数对象,它接受两个索引并返回它们之间的距离。

我想利用 boost::graphmetric_tsp_approx。为此,我需要一个完整的基数图 size,因此我想为此使用一个隐式定义的图,以避免创建无用的琐碎的巨大图结构。

一切似乎都工作正常,但我的问题是 metric_tsp_approx 在某些时候使用 dijkstra_shortest_paths,它定义了一个 ColorMap。这会导致以下两个问题:

/usr/include/boost/graph/dijkstra_shortest_paths.hpp:373:60: error: no type named 'value_type' in 'struct boost::property_traits<boost::bgl_named_params<boost::detail::_project2nd<double, double>, boost::distance_combine_t, boost::bgl_named_params<std::less<double>, boost::distance_compare_t, boost::bgl_named_params<boost::iterator_property_map<__gnu_cxx::__normal_iterator<long unsigned int*, std::vector<long unsigned int> >, boost::typed_identity_property_map<long unsigned int>, long unsigned int, long unsigned int&>, boost::vertex_predecessor_t, boost::bgl_named_params<EdgeWeightMap<double>, boost::edge_weight_t, boost::bgl_named_params<boost::typed_identity_property_map<long unsigned int>, boost::vertex_index_t, boost::bgl_named_params<long unsigned int, boost::root_vertex_t, boost::no_property> > > > > > >'
typedef typename property_traits<ColorMap>::value_type ColorValue;
^

/usr/include/boost/graph/dijkstra_shortest_paths.hpp:374:38: error: no type named 'value_type' in 'struct boost::property_traits<boost::bgl_named_params<boost::detail::_project2nd<double, double>, boost::distance_combine_t, boost::bgl_named_params<std::less<double>, boost::distance_compare_t, boost::bgl_named_params<boost::iterator_property_map<__gnu_cxx::__normal_iterator<long unsigned int*, std::vector<long unsigned int> >, boost::typed_identity_property_map<long unsigned int>, long unsigned int, long unsigned int&>, boost::vertex_predecessor_t, boost::bgl_named_params<EdgeWeightMap<double>, boost::edge_weight_t, boost::bgl_named_params<boost::typed_identity_property_map<long unsigned int>, boost::vertex_index_t, boost::bgl_named_params<long unsigned int, boost::root_vertex_t, boost::no_property> > > > > > >'
typedef color_traits<ColorValue> Color;
^

但是,我不知道如何从我所在的地方修复 ColorMap 的特征,我自己创建颜色属性映射没有任何好处。

我用来创建隐式图并在其上运行 tsp_metric_approx 的代码如下。对于它的长度,我深表歉意,我希望它是直截了当的。它所做的是建立一个类 CompleteGraph,具有一个模板参数 F,用于指定 distance 函数的返回类型。此类具有成为 VertexListGraphIncidenceGraph 所需的迭代器,因此 tsp_metric_approx 可以在其上运行。

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <vector>

#include <boost/iterator/iterator_facade.hpp>
#include <boost/graph/metric_tsp_approx.hpp>

using namespace boost;

typedef std::size_t VertexDescriptor;
typedef std::pair<VertexDescriptor, VertexDescriptor> EdgeDescriptor;

class VertexIterator : public boost::iterator_facade<VertexIterator, VertexDescriptor const, boost::bidirectional_traversal_tag>
{
public:
//! Default constructor
VertexIterator() : pos_(0) {}

//! Constructor setting the position
explicit VertexIterator(VertexDescriptor pos) : pos_(pos) {}

//! Dereference the iterator
VertexDescriptor const& dereference() const { return pos_; }

//! Check for equality
bool equal(VertexIterator const& other) const { return pos_ == other.pos_; }

//! Increment
void increment() { ++pos_; }

//! Decrement
void decrement() { --pos_; }

private:
//! Grant access to boost::iterator_facade
friend class boost::iterator_core_access;

//! The current position
VertexDescriptor pos_ = 0;
};

class OutEdgeIterator : public boost::iterator_facade<OutEdgeIterator, EdgeDescriptor const, boost::bidirectional_traversal_tag>
{
public:
//! Constructor setting the source vertex
explicit OutEdgeIterator(VertexDescriptor source) { const std::size_t target = source == 0 ? 1 : 0; pos_ = EdgeDescriptor(source, target); }

//! Constructor setting the source vertex and the target
explicit OutEdgeIterator(VertexDescriptor source, VertexDescriptor target) : pos_(source, target) {}

//! Dereference the iterator
EdgeDescriptor const& dereference() const { return pos_; }

//! Check for equality
bool equal(OutEdgeIterator const& other) const { return pos_ == other.pos_; }

//! Increment
void increment() { ++pos_.second; if(pos_.first == pos_.second) { ++pos_.second; } }

//! Decrement
void decrement() { --pos_.second; if(pos_.first == pos_.second) { --pos_.second; } }

private:
//! Grant access to boost::iterator_facade
friend class boost::iterator_core_access;

//! The current edge
EdgeDescriptor pos_ = EdgeDescriptor(0, 1);
};

//! Class representing a complete graph
/*!
* This class works as a complete graph.
* It defines a distance property map between any two points by calling the passed distance function.
* \tparam F The return type of the distance function
*/
template<typename F>
class CompleteGraph
{
public:
typedef VertexDescriptor vertex_descriptor;
typedef EdgeDescriptor edge_descriptor;
typedef void adjacency_iterator;
typedef OutEdgeIterator out_edge_iterator;
typedef void in_edge_iterator;
typedef void edge_iterator;
typedef VertexIterator vertex_iterator;
typedef std::size_t degree_size_type;
typedef std::size_t vertices_size_type;
typedef std::size_t edges_size_type;
typedef undirected_tag directed_category;
typedef disallow_parallel_edge_tag edge_parallel_category;
typedef vertex_list_graph_tag traversal_category;

//! Delete default constructor
CompleteGraph() = delete;

//! Constructor from a given size
/*!
* If no distance is specified, we default to a constant function returning F(1)
*/
explicit CompleteGraph(std::size_t size) : size_(size), distance_(returnOne) {}

//! Constructor from a given size and a distance function of type F
/*!
* The constructed graph will have size many vertices.
* Its distance map will be of the following form: The distance between points i and j is distance(i, j).
* \param[in] size The size the graph should have
* \param[in] distance Binary function taking std::size_t arguments and returning the distance between two points
*/
explicit CompleteGraph(std::size_t size, std::function<F(std::size_t, std::size_t)> const& distance) : size_(size), distance_(distance) {}

//! Access to size_
std::size_t size() const { return size_; }

//! Access to distance_
std::function<F(std::size_t, std::size_t)> const& distance() const { return distance_; }

private:
//! The size of the graph
std::size_t size_;

//! The distance function used to find the distance between point i and point j
std::function<F(std::size_t, std::size_t)> const& distance_;

//! Distance function that just returns F(1)
std::function<F(std::size_t, std::size_t)> returnOne = [] (std::size_t, std::size_t) { return F(1); };
};

//! Weigth map for all edges
template<typename F>
class EdgeWeightMap
{
public:
typedef F value_type;
typedef F reference_type;
typedef reference_type reference;
typedef EdgeDescriptor key_type;
typedef readable_property_map_tag category;

//! Constructor from a distance function
explicit EdgeWeightMap(std::function<F(std::size_t, std::size_t)> const& distance) : distance_(distance) {}

//! Operator to dereference the property map
value_type operator[](key_type key) const { return distance_(key.first, key.second); }

//! Get function
friend inline value_type get(EdgeWeightMap<F> const& edgeWeightMap, EdgeWeightMap<F>::key_type const& key) { return edgeWeightMap[key]; }

private:
//! The distance function
std::function<F(std::size_t, std::size_t)> const& distance_;
};

//! Return the number of vertices of a CompleteGraph
template<typename F>
std::size_t num_vertices(CompleteGraph<F> const& g) { return g.size(); }

//! Return a pair allowing iteration over all vertices
template<typename F>
std::pair<VertexIterator, VertexIterator> vertices(CompleteGraph<F> const& g) { return std::make_pair(VertexIterator(0), VertexIterator(g.size())); }

//! Return a pair allowing iteration over all outgoing edges of a vertex
template<typename F>
std::pair<OutEdgeIterator, OutEdgeIterator> out_edges(VertexDescriptor s, CompleteGraph<F> const& g) { return std::make_pair(OutEdgeIterator(s), OutEdgeIterator(s, g.size())); }

//! Return the out-degree which is constant size - 1 for all vertices
template<typename F>
std::size_t out_degree(VertexDescriptor, CompleteGraph<F> const& g) { return g.size() - 1; }

//! Return the source of an edge
template<typename F>
VertexDescriptor source(EdgeDescriptor e, CompleteGraph<F> const&) { return e.first; }

//! Return the target of an edge
template<typename F>
VertexDescriptor target(EdgeDescriptor e, CompleteGraph<F> const&) { return e.second; }

//! Return the index map
template<typename F>
identity_property_map get(vertex_index_t, CompleteGraph<F> const&) { return identity_property_map(); }

//! Return the distance map
template<typename F>
EdgeWeightMap<F> get(edge_weight_t, CompleteGraph<F> const& g) { return EdgeWeightMap<F>(g.distance()); }

//! Wrapper function for automatic template parameter
template<typename F>
CompleteGraph<F> makeCompleteGraph(std::size_t size, std::function<F(std::size_t, std::size_t)> const& distance) { return CompleteGraph<F>(size, distance); }

//! Compute a metric TSP solution through the points supplied
/*!
* This function finds a solution through n many points whose pairwise distance is given by a function argument.
* The supplied distance function needs to satisfy the triangle inequality and must be symmetric.
* \tparam F The type of the return value of distance
* \param[in] size The number of points through which the TSP tour should be found
* \param[in] start The index of the point at which to start
* \param[in] distance A function taking two std::size_t's and returning the distance between point i and point j
* \return A vector representing the TSP tour
*/
template<typename F>
std::vector<std::size_t> computeTspTour(std::size_t size, std::size_t start, std::function<F(std::size_t, std::size_t)> const& distance)
{
std::vector<std::size_t> tour;
const auto completeGraph = makeCompleteGraph(size, distance);
metric_tsp_approx_tour_from_vertex(completeGraph, start, std::back_inserter(tour));
return tour;
}

int main()
{
typedef std::complex<double> Point;

const std::vector<Point> points{{.0, .0}, {1.0, 2.0}, {1.0, 5.0}, {2.5, 9.2}, {-100.2, 24.1}, {.1, 10.0}};
const std::function<double(std::size_t, std::size_t)> distance = [&points] (std::size_t i, std::size_t j) { return std::abs(points[i] - points[j]); };

const auto tour = computeTspTour(points.size(), 0, distance);

std::cout << "Found TSP tour:\n";
std::copy(tour.cbegin(), tour.cend(), std::ostream_iterator<char>(std::cout, " "));

return EXIT_SUCCESS;
}

如果有人有更短的替代建议或根本避免创建任何图,我也很高兴,一个完整的图除了顶点数之外实际上没有任何信息。

最佳答案

DFS 和 TSP 算法要求图既是“顶点列表”又是“关联图”(即可以访问顶点邻居的图)。

你的图表必须有类似的东西

 struct traversal_category
: public virtual boost::vertex_list_graph_tag
, public virtual boost::adjacency_graph_tag
, public virtual boost::incidence_graph_tag
{
};

typedef typename boost::adjacency_iterator_generator<CompleteGraph<F>, vertex_descriptor, out_edge_iterator>::type adjacency_iterator;

代替

 typedef vertex_list_graph_tag traversal_category;
typedef void adjacency_iterator;

通过这些更改以及一些修饰性更改,您的代码可以通过编译。

顶点索引映射是可选的,Boost 将使用 VertexMap 和 ColorMap 包装您的代码,可能基于 unordered_map。它的效率会低于“身份”或类似的自定义 map ,但会起作用。

祝你好运!

关于c++ - boost::graph 中的 ColorMap 用于 metric_tsp_approx 的隐式图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19660264/

27 4 0
文章推荐: c++ - 编译器为函数指定 always_inline
文章推荐: html - 想要在鼠标悬停时隐藏
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com