- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在 Keras 中使用 VGG16(解码器部分)训练 U-Net。该模型训练良好并且正在学习 - 我看到验证集的 gradua tol 改进。
但是,当我尝试对图像调用 predict
时,我收到所有值都相同的矩阵。
模型如下:
class Gray2VGGInput(Layer):
"""Custom conversion layer"""
def build(self, x):
self.image_mean = K.variable(value=np.array([103.939, 116.779, 123.68]).reshape([1,1,1,3]).astype('float32'),
dtype='float32',
name='imageNet_mean' )
self.built = True
return
def call(self, x):
rgb_x = K.concatenate([x,x,x], axis=-1 )
norm_x = rgb_x - self.image_mean
return norm_x
def compute_output_shape(self, input_shape):
return input_shape[:3] + (3,)
def UNET1_VGG16(img_rows=864, img_cols=1232):
'''
UNET with pretrained layers from VGG16
'''
def upsampleLayer(in_layer, concat_layer, input_size):
'''
Upsampling (=Decoder) layer building block
Parameters
----------
in_layer: input layer
concat_layer: layer with which to concatenate
input_size: input size fot convolution
'''
upsample = Conv2DTranspose(input_size, (2, 2), strides=(2, 2), padding='same')(in_layer)
upsample = concatenate([upsample, concat_layer])
conv = Conv2D(input_size, (1, 1), activation='relu', kernel_initializer='he_normal', padding='same')(upsample)
conv = BatchNormalization()(conv)
conv = Dropout(0.2)(conv)
conv = Conv2D(input_size, (1, 1), activation='relu', kernel_initializer='he_normal', padding='same')(conv)
conv = BatchNormalization()(conv)
return conv
#--------
#INPUT
#--------
#batch, height, width, channels
inputs_1 = Input((img_rows, img_cols, 1))
#-----------------------
#INPUT CONVERTER & VGG16
#-----------------------
inputs_3 = Gray2VGGInput(name='gray_to_rgb')(inputs_1) #shape=(img_rows, img_cols, 3)
base_VGG16 = VGG16(include_top=False, weights='imagenet', input_tensor=inputs_3)
#--------
#DECODER
#--------
c1 = base_VGG16.get_layer("block1_conv2").output #(None, 864, 1232, 64)
c2 = base_VGG16.get_layer("block2_conv2").output #(None, 432, 616, 128)
c3 = base_VGG16.get_layer("block3_conv2").output #(None, 216, 308, 256)
c4 = base_VGG16.get_layer("block4_conv2").output #(None, 108, 154, 512)
#--------
#BOTTLENECK
#--------
c5 = base_VGG16.get_layer("block5_conv2").output #(None, 54, 77, 512)
#--------
#ENCODER
#--------
c6 = upsampleLayer(in_layer=c5, concat_layer=c4, input_size=512)
c7 = upsampleLayer(in_layer=c6, concat_layer=c3, input_size=256)
c8 = upsampleLayer(in_layer=c7, concat_layer=c2, input_size=128)
c9 = upsampleLayer(in_layer=c8, concat_layer=c1, input_size=64)
#--------
#DENSE OUTPUT
#--------
outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=inputs_1, outputs=outputs)
#Freeze layers
for layer in model.layers[:16]:
layer.trainable = False
print(model.summary())
model.compile(optimizer='adam',
loss=fr.diceCoefLoss,
metrics=[fr.diceCoef])
return model
然后,我加载模型并调用 predict
:
model = un.UNET1_VGG16()
pth_to_model = PTH_OUTPUT + 'weights__L_01.h5'
model.load_weights(pth_to_model)
preds = model.predict(X_image_test, verbose=1)
但是,结果如下所示:
[[0.4567569 0.4567569 0.4567569 ... 0.4567569 0.4567569 0.4567569]
[0.4567569 0.4567569 0.4567569 ... 0.4567569 0.4567569 0.4567569]
[0.4567569 0.4567569 0.4567569 ... 0.4567569 0.4567569 0.4567569]
...
[0.4567569 0.4567569 0.4567569 ... 0.4567569 0.4567569 0.4567569]
[0.4567569 0.4567569 0.4567569 ... 0.4567569 0.4567569 0.4567569]
[0.4567569 0.4567569 0.4567569 ... 0.4567569 0.4567569 0.4567569]]
我对没有 VGG16 的其他型号使用相同的程序,一切正常。因此,我假设与 VGG16 相关的内容是错误的。也许是输入层,我正在将其转换为“假”RGB 图像?
最佳答案
问题出在 VGG
卡住层上。如果您的数据集与 ImageNet 完全不同,也许您应该端到端地训练整个模型。此外,显然,如果您卡住 BatchNormalization
层,它们的行为可能会很奇怪。有关引用,请参阅此 discussion .
关于python - Keras Unet + VGG16 预测都一样,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56101737/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!