gpt4 book ai didi

python - 微电网电池调度的约束优化

转载 作者:太空宇宙 更新时间:2023-11-04 11:16:11 39 4
gpt4 key购买 nike

给定电力消耗、太阳能电池板发电量、价格(所有在给定时间 t 时)等输入,我们有一个电池,我们想评估它在任何给定时间应该(放电)/充电多少。问题可以表述如下:

Pt = price of electricity at time t

Lt = consumption of electricity at time t

Zt = charge of battery at time t (how much is in the battery)

St = Electricity generated from solar generator at time t

Qt = amount the battery (dis)/charges at time t

我们要优化的功能是 Ct = Pt *(Lt - St - Qt)

这旨在最大限度地减少购买的电量

具有以下约束:

Lt - St - Qt >= 0 (our demand has to be non-negative)

Qmin <= Qt <= Qmax ( the battery can only (dis)/charge between certain values at any given time)

Zmin <= Zt <= Zmax. (the battery has to be within its capacity, i.e. you can't discharge more than the battery holders, and you can charge more than the battery can hold)

Zt+1 = Zt + Qt+1 ( this means that the battery level at the next time step is equal to the battery level at the previous time step plus the amount that was (dis)/charged from the battery)

我遇到的问题是如何在 python (Scipy) 中制定问题,特别是更新电池电量。

我知道存在其他图书馆(Pyomo、Pulp),欢迎提供解决方案。

最佳答案

你很幸运,Giorgio 的回答激励我学习 pyomo(我主要使用 PULP),所以利用你的问题来确保我理解所有界面。我会把它贴在这里,这样我以后可以自己再次找到它:

import pyomo.environ as pyomo
import numpy as np

# create model
m = pyomo.ConcreteModel()

# Problem DATA
T = 24

Zmin = 0.0
Zmax = 2.0

Qmin = -1.0
Qmax = 1.0

# Generate prices, solar output and load signals
np.random.seed(42)
P = np.random.rand(T)*5.0
S = np.random.rand(T)
L = np.random.rand(T)*2.0

# Indexes
times = range(T)
times_plus_1 = range(T+1)

# Decisions variables
m.Q = pyomo.Var(times, domain=pyomo.Reals)
m.Z = pyomo.Var(times_plus_1, domain=pyomo.NonNegativeReals)

# objective
cost = sum(P[t]*(L[t] - S[t] - m.Q[t]) for t in times)
m.cost = pyomo.Objective(expr = cost, sense=pyomo.minimize)

# constraints
m.cons = pyomo.ConstraintList()
m.cons.add(m.Z[0] == 0.5*(Zmin + Zmax))

for t in times:
m.cons.add(pyomo.inequality(Qmin, m.Q[t], Qmax))
m.cons.add(pyomo.inequality(Zmin, m.Z[t], Zmax))
m.cons.add(m.Z[t+1] == m.Z[t] - m.Q[t])
m.cons.add(L[t] - S[t] - m.Q[t] >= 0)

# solve
solver = pyomo.SolverFactory('cbc')
solver.solve(m)

# display results
print("Total cost =", m.cost(), ".")

for v in m.component_objects(pyomo.Var, active=True):
print ("Variable component object",v)
print ("Type of component object: ", str(type(v))[1:-1]) # Stripping <> for nbconvert
varobject = getattr(m, str(v))
print ("Type of object accessed via getattr: ", str(type(varobject))[1:-1])

for index in varobject:
print (" ", index, varobject[index].value)

关于python - 微电网电池调度的约束优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56968971/

39 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com