- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我很好奇为什么 pandas.Series.div() 在应用于 pandas Series 数字时比/= 慢。例如:
python3 -m timeit -s 'import pandas as pd; ser = pd.Series(list(range(99999)))' 'ser /= 7'
1000 loops, best of 3: 584 usec per loop
python3 -m timeit -s 'import pandas as pd; ser = pd.Series(list(range(99999)))' 'ser.div(7)'
1000 loops, best of 3: 746 usec per loop
我认为这是因为前者就地更改了系列,而后者返回了一个新系列。但如果是这样的话,那么如果 div() 和 mul() 没有/= 和 */快,为什么还要费心去实现它们呢?即使你不想原地改变系列,ser/7 仍然比 .div() 更快:
python3 -m timeit -s 'import pandas as pd; ser = pd.Series(list(range(99999)))' 'ser / 7'
1000 loops, best of 3: 656 usec per loop
那么 pd.Series.div() 有什么用,它会变慢吗?
最佳答案
Pandas .div
显然实现了类似于 /
和 /=
的除法。
有一个单独的 .div
的主要原因是 Pandas 包含一个语法模型,其中数据帧上的操作由连续的过滤器的应用程序描述,例如.div
、.str
等允许简单的连接:
ser.div(7).apply(lambda x: 'text: ' + str(x)).str.upper()
以及对多个参数的更简单支持(参见 .func(a, b, c)
不可能用二元运算符编写)。
相比之下,如果没有 div
,同样的代码会写成:
(ser / 7).apply(lambda x: 'text: ' + str(x)).str.upper()
/
操作可能更快,因为与 .div()
相比,与 /
操作符相关的 Python 开销更少。
相比之下,x/= y
运算符替换了构造 x = x/y
。对于基于 NumPy(如 Pandas)的矢量化容器,它更进一步:它使用 in-place 操作而不是创建(可能耗时和内存) 的副本x
。这就是为什么 /=
比 /
和 .div()
都快的原因。
请注意,虽然在大多数情况下这是等效的,但有时(如本例)它可能仍需要转换为不同的数据类型,这在 Pandas 中会自动完成(但在 NumPy 中不会)。
关于python - pandas.Series.div() 对比/=,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57060488/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!