- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用张量实现简单的梯度下降算法。它学习两个参数 m 和 c。
它的正常 python 代码是:
for i in range(epochs):
Y_pred = m*X + c # The current predicted value of Y
D_m = (-2/n) * sum(X * (Y - Y_pred)) # Derivative wrt m
D_c = (-2/n) * sum(Y - Y_pred) # Derivative wrt c
m = m - L * D_m # Update m
c = c - L * D_c # Update c
print (m, c)
python 的输出:
0.7424335285442664 0.014629895049575754
1.1126970531591416 0.021962519495058154
1.2973530613155333 0.025655870599552183
1.3894434413955663 0.027534253868790198
1.4353697670010162 0.028507481513901086
Tensorflow 等效代码:
#Graph of gradient descent
y_pred = m*x + c
d_m = (-2/n) * tf.reduce_sum(x*(y-y_pred))
d_c = (-2/n) * tf.reduce_sum(y-y_pred)
upm = tf.assign(m, m - learning_rate * d_m)
upc = tf.assign(c, c - learning_rate * d_c)
#starting session
sess = tf.Session()
#Training for epochs
for i in range(epochs):
sess.run(y_pred)
sess.run(d_m)
sess.run(d_c)
sess.run(upm)
sess.run(upc)
w = sess.run(m)
b = sess.run(c)
print(w,b)
tensorflow 的输出:
0.7424335285442664 0.007335550424492317
1.1127687194584988 0.011031122807663662
1.2974962163433057 0.012911024540805463
1.3896400798226038 0.013885244876397126
1.4356019721347115 0.014407698787092268
两者的参数m 具有相同的值,但两者的参数c 具有不同的值,尽管两者的实现相同。
输出包含参数 m 和 c 的前 5 个值。参数c使用张量的输出大约是普通python的一半。
我不知道我的错误在哪里。
重新创建整个输出: Repo containing data along with both implementations
repo 还包含在 events 目录中通过 tensorboard 获取的图形图像
最佳答案
问题在于,在 TF 实现中,更新不是自动执行的。换句话说,该算法的实现是以交错方式更新 m
和 c
(例如,当 m
的新值被使用时更新 c
)。要使更新成为原子更新,您应该同时运行 upm
和 upc
:
sess.run([upm, upc])
关于python - 使用张量计算错误值的梯度下降,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57830439/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!