gpt4 book ai didi

python - 精英主义在遗传算法中的失败

转载 作者:太空宇宙 更新时间:2023-11-04 10:50:25 27 4
gpt4 key购买 nike

我正在尝试运行我用 Python 编写的遗传算法。不幸的是,当发生突变时,尽管使用精英主义将上一代的最适应解决方案传递给新一代,但最适应解决方案可能比上一代的最适应解决方案更糟糕。像这样:

There are 86825 generations left
Invalid count is: 0
The fittest individual has a fitness of 16.9094.
The least fit individual has a fitness of 36.6535
*******************************************************************************
mutation on 107
There are 86824 generations left
Invalid count is: 3
The fittest individual has a fitness of 19.8637.
The least fit individual has a fitness of 1.1618e+09

我曾尝试实现精英主义,我认为这可以避免这种情况发生,但它仍然发生了。我的算法按以下顺序执行:

NUM_GEN = 100000
print "Running Genetic Algorithm for %d generations." % NUM_GEN
gen_count = 0
while gen_count < NUM_GEN:
#genetic.add_fitness_key()
genetic.add_fitness_fast()
fittest_list = np.append(fittest_list, genetic.fittest_fitness)
least_fit_list = np.append(least_fit_list, genetic.least_fitness)
genetic.sort_pop()
genetic.make_new_pop()
genetic.elitism()
genetic.population = genetic.new_pop
print "There are %g generations left" %(NUM_GEN-gen_count)
gen_count+=1

调用的函数是:

def select_parent_from_tournament(self):
x = random.randint(0, 19)
player1 = self.population[x]
y = random.randint(0, 19)
player2 = self.population[y]
if player1['fitness'] <= player2['fitness']:
parent = player1['chrom_list']
else:
parent = player2['chrom_list']
return parent

def crossover(self):
crossover_point = random.randint(0, self.chromosome_size)*(self.string_length)
parent1 = self.select_parent_from_tournament()
parent2 = self.select_parent_from_tournament()
parent1 = self.mutate(parent1)
parent2 = self.mutate(parent2)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent1[crossover_point:] + parent2[:crossover_point]
return child1, child2

def mutate(self, chromosome):
for i in range(len(chromosome)):
if random.random() < self.mutation_rate:
print 'mutation on %i' % i
if chromosome[i] =='0':
chromosome[i] = '1'
else:
chromosome[i] = '0'
return chromosome

def make_new_pop(self):
self.new_pop = []
for i in range(10):
dictionary1= {}
dictionary2 = {}
dictionary1['chrom_list'], dictionary2['chrom_list'] = \
self.crossover()
self.new_pop = np.append(self.new_pop, [dictionary1, dictionary2])

def elitism(self):
r = random.randint(0, 19)
self.new_pop[r] = self.population[0]

所以我不明白为什么如果发生突变,旧种群中的最适解不会传递给新种群?

最佳答案

在您的交叉方法中,您执行 parent1 = self.select_parent_from_tournament() 返回对原始种群染色体列表的引用。之后,您进行修改列表(在原始群体中)的突变。只有在突变之后,您才能通过 child1 = parent1[:crossover_point] + parent2[crossover_point:] 复制子项中的内容。正如@Xavier 建议的那样,您需要从 mutation() 中的原始群体创建元素的物理副本。

实际上,您的 mutation() 方法改变了原始种群。

作为旁注,通常交叉和变异是两种不同的操作。此外,文献中的引用文献表明突变概率应保持在非常低的水平。否则它会让你无法收敛。

关于python - 精英主义在遗传算法中的失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14321066/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com