- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我的问题与 this one 重复.那里没有解决办法。为了找到解决方案并详细说明我的具体设置,下面显示了用于从 .oni 文件读取帧的函数。如果使用 Type == 2 运行此函数(即运行 # of RGBD 图像,其中 Criteria 是 #),在 for 循环中运行此函数应该允许用户访问每个图像。但是,彩色图像和深度图像的索引不匹配并且乱序。这一直持续到 waitForAnyStream 对以下所有对 IMG_pipeline::listen(...) 的调用超时为止。
void IMG_pipeline::listen(int Type, int Criteria){
int exitNumber;
clock_t start = clock();
double elapsedtime;
openni::VideoFrameRef frame;
int CurrentIMGCount=0;
switch (Type){
case 0:
{
exitNumber = -1;
break;
}
case 1:
{
exitNumber = Criteria;
break;
}
case 2:
{
exitNumber = -1;
break;
}
}
for (int i = 0;i!=exitNumber;i++){
readyStream = -1;
rc = openni::OpenNI::waitForAnyStream(streams, 2, &readyStream, SAMPLE_READ_WAIT_TIMEOUT);
if (rc != openni::STATUS_OK)
{
printf("Wait failed! (timeout is %d ms)\n%s\n", SAMPLE_READ_WAIT_TIMEOUT, openni::OpenNI::getExtendedError());
//break;
}
switch (readyStream)
{
case 0:
{
// Depth
depth.readFrame(&frame);
break;
}
case 1:
{
// Color
color.readFrame(&frame);
break;
}
default:
{
printf("Unexpected stream: %i\n", readyStream);
continue;
}
}
int Height = frame.getHeight();
int Width = frame.getWidth();
cvColor.release();
cvX.release();
cvY.release();
cvZ.release();
cvColor = cv::Mat(Height, Width, CV_8UC3);
cvX = cv::Mat(Height, Width, CV_32F);
cvY = cv::Mat(Height, Width, CV_32F);
cvZ = cv::Mat(Height, Width, CV_32F);
switch (frame.getVideoMode().getPixelFormat())
{
case openni::PIXEL_FORMAT_DEPTH_1_MM:
case openni::PIXEL_FORMAT_DEPTH_100_UM:
{
openni::DepthPixel* pDepth = (openni::DepthPixel*)frame.getData();
int k =0;
for (int ri = 0; ri<Height; ri++)
{
for (int ci = 0; ci<Width; ci++)
{
float pdepth_val = pDepth[k];
openni::CoordinateConverter::convertDepthToWorld(depth, (float)ri, (float)ci, pdepth_val, &cvX.at<float>(ri,ci), &cvY.at<float>(ri,ci), &cvZ.at<float>(ri,ci));
k++;
}
}
TotalFrames[0]++;
XYZCaptured = true;
printf("Frame Index: %i \n", frame.getFrameIndex());
printf("Depth Captured. \n");
break;
}
case openni::PIXEL_FORMAT_RGB888:
{
cvColor.data = (uchar*)frame.getData();
TotalFrames[1]++;
ColorCaptured = true;
printf("Frame Index: %i \n", frame.getFrameIndex());
printf("Color Captured. \n");
break;
}
default:
printf("Unknown format \n");
}
printf("Frame extracted. \n");
if (ColorCaptured && XYZCaptured){
if (NewButNotRead == true){
IMGsMissed++;
}
else
NewButNotRead = true;
ColorCaptured = false;
XYZCaptured = false;
RGBD_out.clear();
RGBD_out.push_back(cvX);
RGBD_out.push_back(cvY);
RGBD_out.push_back(cvZ);
RGBD_out.push_back(cvColor);
CurrentIMGCount++;
printf("Image overwritten. \n");
}
elapsedtime=(clock()-start)/((double)CLOCKS_PER_SEC);
printf("Time since listen initiation: %f \n \n", elapsedtime);
if (CurrentIMGCount ==Criteria && Type == 2)
return;
else if (elapsedtime>(double)Criteria && Type==0)
return;
}
frame.release();
}
这是一个控制台输出示例:
Frame Index: 1
Depth Captured.
Frame extracted.
Time since listen initiation: 0.004846
Frame Index: 2
Depth Captured.
Frame extracted.
Time since listen initiation: 0.011601
Frame Index: 1
Color Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.012640
Depth frame count: 3
Color frame count: 2
Frame Index: 54
Color Captured.
Frame extracted.
Time since listen initiation: 0.000067
Frame Index: 57
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.005878
Depth frame count: 4
Color frame count: 3
Frame Index: 96
Color Captured.
Frame extracted.
Time since listen initiation: 0.000079
Frame Index: 99
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.003628
Depth frame count: 5
Color frame count: 4
Frame Index: 126
Color Captured.
Frame extracted.
Time since listen initiation: 0.000048
Frame Index: 130
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.004782
Depth frame count: 6
Color frame count: 5
Frame Index: 152
Color Captured.
Frame extracted.
Time since listen initiation: 0.000065
Frame Index: 156
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.008294
Depth frame count: 7
Color frame count: 6
Frame Index: 181
Color Captured.
Frame extracted.
Time since listen initiation: 0.000045
Frame Index: 185
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.004095
Depth frame count: 8
Color frame count: 7
Frame Index: 208
Color Captured.
Frame extracted.
Time since listen initiation: 0.000054
Frame Index: 212
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.004242
Depth frame count: 9
Color frame count: 8
Frame Index: 236
Color Captured.
Frame extracted.
Time since listen initiation: 0.000092
Frame Index: 240
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.005918
Depth frame count: 10
Color frame count: 9
Frame Index: 261
Color Captured.
Frame extracted.
Time since listen initiation: 0.000731
Frame Index: 262
Color Captured.
Frame extracted.
Time since listen initiation: 0.000877
Frame Index: 266
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.009347
Depth frame count: 11
Color frame count: 11
Frame Index: 286
Color Captured.
Frame extracted.
Time since listen initiation: 0.000047
Frame Index: 290
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.006080
Depth frame count: 12
Color frame count: 12
Frame Index: 311
Color Captured.
Frame extracted.
Time since listen initiation: 0.000072
Frame Index: 315
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.006453
Depth frame count: 13
Color frame count: 13
Frame Index: 337
Color Captured.
Frame extracted.
Time since listen initiation: 0.000062
Frame Index: 341
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.007485
Depth frame count: 14
Color frame count: 14
Frame Index: 367
Color Captured.
Frame extracted.
Time since listen initiation: 0.000042
Frame Index: 371
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.003758
Depth frame count: 15
Color frame count: 15
Frame Index: 390
Color Captured.
Frame extracted.
Time since listen initiation: 0.000073
Frame Index: 395
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.007917
Depth frame count: 16
Color frame count: 16
Frame Index: 416
Color Captured.
Frame extracted.
Time since listen initiation: 0.000105
Frame Index: 421
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.007554
Depth frame count: 17
Color frame count: 17
Frame Index: 453
Color Captured.
Frame extracted.
Time since listen initiation: 0.000060
Frame Index: 458
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.006150
Depth frame count: 18
Color frame count: 18
Frame Index: 481
Color Captured.
Frame extracted.
Time since listen initiation: 0.000074
Frame Index: 486
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.007169
Depth frame count: 19
Color frame count: 19
Frame Index: 517
Color Captured.
Frame extracted.
Time since listen initiation: 0.000045
Frame Index: 522
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.004196
Depth frame count: 20
Color frame count: 20
Frame Index: 547
Color Captured.
Frame extracted.
Time since listen initiation: 0.000071
Frame Index: 552
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.007375
Depth frame count: 21
Color frame count: 21
Frame Index: 625
Color Captured.
Frame extracted.
Time since listen initiation: 0.000179
Frame Index: 631
Depth Captured.
Frame extracted.
Image overwritten.
Time since listen initiation: 0.007922
Depth frame count: 22
Color frame count: 22
Wait failed! (timeout is 2000 ms)
waitForStreams: timeout reached
Unexpected stream: -1
Wait failed! (timeout is 2000 ms)
waitForStreams: timeout reached
Unexpected stream: -1
Wait failed! (timeout is 2000 ms)
waitForStreams: timeout reached
Unexpected stream: -1
Wait failed! (timeout is 2000 ms)
waitForStreams: timeout reached
Unexpected stream: -1
Wait failed! (timeout is 2000 ms)
waitForStreams: timeout reached
Unexpected stream: -1
Wait failed! (timeout is 2000 ms)
waitForStreams: timeout reached
Unexpected stream: -1
Wait failed! (timeout is 2000 ms)
waitForStreams: timeout reached
Unexpected stream: -1
这是对 IMG_pipeline::listen(...) 的调用:
IMG_pipeline pip_inst;
std::string FileName = "/home/derek/Test Data/RGBD/RGBD_S2_R1";
int Type = 2;
int Criteria = 1;
std::vector<cv::Mat> OUT;
int NumMissedIMGs;
int Start;
int Stop;
pip_inst.connect(FileName);
while (true)
{
pip_inst.listen(Type, Criteria);
if (pip_inst.IsNewIMG()){
OUT = pip_inst.GetImage();
cv::imshow("Current Frame", OUT.at(3));
char c = cv::waitKey(0);
if (c == 'f')
{
printf("Depth frame count: %i \n", pip_inst.GetDepthFrameCount());
printf("Color frame count: %i \n", pip_inst.GetColorFrameCount());
}
else
{
Start = pip_inst.GetColorFrameCount();
break;
}
cv::destroyWindow("Current Frame");
}
}
彩色图像也是交替的 R、G、B 色调。但是,我确信这与数据在 cv::Mat 中的顺序有关。
更有趣的是,通过许多帧调用 IMG_pipeline::listen(...) 与多次运行 IMG_pipeline::listen(...) 具有不同的索引结果,通过 .oni 文件递增。
最佳答案
因此,由于编译器之间的 uchar 差异,RGB 信息没有被正确复制。所以RGB信息的case语句改成这样:
case openni::PIXEL_FORMAT_RGB888:
{
openni::RGB888Pixel* imgbuffer = (openni::RGB888Pixel*)frame.getData();
//cvColor.data = (uchar*)imgbuffer;
memcpy( cvColor.data, imgbuffer, 3*frame.getHeight()*frame.getWidth()*sizeof(uint8_t));
cv::cvtColor(cvColor,cvColor,cv::COLOR_BGR2RGB);
TotalFrames[1]++;
ColorCaptured = true;
printf("Frame Index: %i \n", frame.getFrameIndex());
printf("Color Captured. \n");
break;
}
此外,为了确保我能够捕捉到每一帧,我放慢了文件播放速度。有趣的是,打开 .oni 文件的播放速度比抓取帧索引快(我只能假设这是捕获它的速度)。不管怎样,这是用
Source.getPlaybackControl()->setSpeed(Ratio);
其中 Source 是我的设备,Ratio 是用户指定的 float 。希望这对将来的人有所帮助。
关于c++ - 读取 .oni 文件会导致乱序帧,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31277504/
序 大家好呀,我是summo,这次来写写我在上班空闲(摸鱼)的时候做的一个小网站的事。去年阿里云不是推出了个活动嘛,2核2G的云服务器一年只要99块钱,懂行的人应该知道这个价格在业界已经是非常良心了
我尝试根据给定的级别顺序(BFS 顺序)构造 BST。我知道这是可能的,但我不知道我该怎么写。问题是我必须使用 BFS 序列。所以,我不能在这里使用递归,我必须迭代地编写我的程序......我发现这有
我是一名优秀的程序员,十分优秀!