gpt4 book ai didi

java - Gurobi 模型最优但违反约束

转载 作者:太空宇宙 更新时间:2023-11-04 10:42:27 25 4
gpt4 key购买 nike

我正在使用 Gurobi 在 JAVA 中编写车辆路由问题 (VRP) 的扩展。我遇到的问题是,当我运行代码时,JAVA 说它是最优的,目标值为零。这不应该是这种情况,因为:

VRP 适用于弧和节点。是否使用弧线由 Xijk 变量指示(是否乘坐车辆 k 从节点 i 行驶到节点 j)。在 VRP 中,有一个限制,即每个客户都需要被恰好访问一次。这意味着客户 j 的至少一个 Xijk 需要为 1。使用哪辆车 k 以及之前访问过的节点 i 是什么,是您要求 Gurobi 找出的内容。

因此,只有当目标函数中存在成本因子为零的 Xijk 变量时,目标值等于 0 才符合逻辑。然而,对我来说情况并非如此,因为我在代码末尾(重新)编写了目标函数,并使用节点 i 到 j 之间的距离作为成本因子。即使当我查看由“model.write("constraintOutput.lp")”检索的模型公式时,我也会看到一个目标函数,其中包含成本因子 >0 的 Xijk 变量。

因此,我四处寻找解决方案,人们提到问题可能是:

a. 初始化变量时,第三个参数不应该为零,因为它说明了目标函数中变量的“成本因子”应该是什么。由于我在优化模型之前在代码的最后部分编写了约束,所以我相信这应该不重要。虽然我在初始化Xijk变量时已将此参数从0更改为1,但问题仍然存在。

b. 我应该在初始化变量和约束后更新我的模型。我已经这样做了,但问题仍然存在。

我什至通过删除一些约束来减少我的模型,但这没有帮助。

有人知道如何解决这个问题吗?

我的代码:

import java.util.ArrayList;
import gurobi.GRB;
import gurobi.GRBEnv;
import gurobi.GRBException;
import gurobi.GRBLinExpr;
import gurobi.GRBModel;
import gurobi.GRBVar;

public class VRP {

public int M; //big number
public int speed; //speed km/h
public int nDepots; //number of depots
public int nCustomers; //number of customers to be visited
public ArrayList<Node> allLocations; //All locations
public ArrayList<Vehicle> vehicleList; //Vehicles
public double [][] dm; //distance matrix

public VRP(ArrayList<Node> n, ArrayList<Node> d, ArrayList<Node> dummyd, ArrayList<Vehicle> v, double [][] distanceMatrix) throws Exception {
this.M = 1000;
this.speed = 60000;

this.vehicleList = v;

this.allLocations = new ArrayList<Node>();
this.allLocations.addAll(d);
this.allLocations.addAll(n);

this.nDepots = d.size();
this.nCustomers = n.size();

this.dm = distanceMatrix;
}

public void solution() throws Exception{

Functions f = new Functions();

// 1. DEFINE MODEL -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
try{
GRBEnv env = new GRBEnv ();
env.set(GRB.IntParam.OutputFlag, 0); //set to 1 to get constraint overview

GRBModel model = new GRBModel(env);
model.set ( GRB.StringAttr.ModelName, "VRP" );

// 2. DEFINE VARIABLES -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

//Xijqk

GRBVar[][][] x = new GRBVar[this.allLocations.size()][this.allLocations.size()][this.vehicleList.size()];

for (int i = 0; i<this.allLocations.size(); i++){
for (int j = 0; j < this.allLocations.size(); j++){
for (int k = 0; k < this.vehicleList.size(); k++){

double dij = f.getDistance(dm, this.allLocations.get(i).nodeID, this.allLocations.get(j).nodeID);
//get.Distance retrieves the distance between two nodes that are indicated by their IDs

x[i][j][k] = model.addVar(0.0, 1.0, dij, GRB.BINARY, "X" + i + j + k); //arc between node i and j used by vehicle k or not
}//k
}//j
}//i

//aik: arival time at customer i by vehicle k

GRBVar[][] a = new GRBVar[this.allLocations.size()][this.vehicleList.size()];

for (int i = 0; i<this.allLocations.size(); i++){
for (int k = 0; k < this.vehicleList.size(); k++){
a[i][k] = model.addVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "a" + i + k); //arival time at node i by vehicle k
}//k
}//i

//dep: departure time from customer i by vehicle k

GRBVar[][] dep = new GRBVar[nDepots][this.vehicleList.size()];

for (int i = 0; i < nDepots; i++){
for (int k = 0; k < this.vehicleList.size(); k++){
dep[i][k] = model.addVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "dep" + i + k); //departure time from depot i by vehicle k
}//k
}//i

model.update();

//3. DEFINE CONSTRAINTS

//Constraint 1
for (int j = nDepots; j < this.allLocations.size(); j++){

GRBLinExpr lhs = new GRBLinExpr();
for(int i = 0; i < this.allLocations.size(); i++){
for (int k = 0; k < this.vehicleList.size(); k++){
lhs.addTerm(1, x[i][j][k]);
}//k
}//i

GRBLinExpr rhs = new GRBLinExpr();
rhs.addConstant(1);

model.addConstr(lhs, GRB.EQUAL, rhs, "Constraint 1");
}//j

//Constraint 2
for (int i = nDepots; i < this.allLocations.size(); i++){

GRBLinExpr lhs = new GRBLinExpr();
for(int j = 0; j < this.allLocations.size(); j++){
for (int k = 0; k < this.vehicleList.size(); k++){
lhs.addTerm(1, x[i][j][k]);
}//k
}//i

GRBLinExpr rhs = new GRBLinExpr();
rhs.addConstant(1);

model.addConstr(lhs, GRB.EQUAL, rhs, "Constraint 2:");
}//j

//Constraint 3
for (int s = nDepots; s < this.allLocations.size(); s++){
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
for (int i = 0; i < this.allLocations.size(); i++){
lhs.addTerm(1, x[i][s][k]);
}//i

GRBLinExpr rhs = new GRBLinExpr();
rhs.addConstant(1);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 3");
}//k
}//s

//Constraint 4
for (int s = nDepots; s < this.allLocations.size(); s++){
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
for (int j = 0; j < this.allLocations.size(); j++){
lhs.addTerm(1, x[s][j][k]);
}//j

GRBLinExpr rhs = new GRBLinExpr();
rhs.addConstant(1);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 4");
}//k
}//s

//Constraint 5
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
for (int i = 0; i < nDepots; i++){
for (int j = nDepots; j < this.allLocations.size(); j++){
lhs.addTerm(1, x[i][j][k]);
}//j
}//i

GRBLinExpr rhs = new GRBLinExpr();
rhs.addConstant(1);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 5:");
}//k

//Constraint 6
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
for (int i = nDepots; i < this.allLocations.size(); i++){
for (int j = 0; j < nDepots; j++){
lhs.addTerm(1, x[i][j][k]);
}//j
}//i

GRBLinExpr rhs = new GRBLinExpr();
rhs.addConstant(1);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 6:");
}//k

//Constraint 7: Capacity constraints of vehicles

for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
for (int i =0; i < this.allLocations.size(); i++){
for (int j = 0; j < this.allLocations.size(); j++){
lhs.addTerm(2, x[i][j][k]);
}//j
}//i

GRBLinExpr rhs = new GRBLinExpr();
rhs.addConstant(20);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 7: Capacity");
}//k

//Constraint 8: #vehicles entering depot cannot exceed depot capacity
for (int j=0; j < nDepots; j++){

GRBLinExpr lhs = new GRBLinExpr();
for (int i = nDepots; i < this.allLocations.size(); i++){
for (int k=0; k < this.vehicleList.size(); k++){
lhs.addTerm(1, x[i][j][k]);
}//for k
}// for i

GRBLinExpr rhs = new GRBLinExpr();
int pj = this.allLocations.get(j).vehicleCapacity;
rhs.addConstant(pj);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 8");
}//i

//Constraint 9: TimeWindow
for (int i = nDepots; i < this.allLocations.size(); i++){
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
lhs.addTerm(1, a[i][k]);

GRBLinExpr rhs = new GRBLinExpr();
double stwi = this.allLocations.get(i).startTime;
rhs.addConstant(stwi);

model.addConstr(lhs, GRB.GREATER_EQUAL, rhs, "Constraint 9: ");
}//k
}//i

//Constraint 10: TimeWindow
for (int i = nDepots; i < this.allLocations.size(); i++){
for (int k = 0; k < this.vehicleList.size(); k++){
GRBLinExpr lhs = new GRBLinExpr();
lhs.addTerm(1, a[i][k]);

GRBLinExpr rhs = new GRBLinExpr();
double etw = this.allLocations.get(i).endTime;
rhs.addConstant(etw);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 10:");
}//for k
}//i

//Constraint 11: determine departure vehicle from depot
for (int i = 0; i < nDepots; i++){
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
double eid = this.allLocations.get(i).startTime;
lhs.addConstant(eid);

GRBLinExpr rhs = new GRBLinExpr();
rhs.addTerm(1, dep[i][k]);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 11:" );
}//k
}//i

//Constraint 12: determine returning time to depot
for (int i = 0; i < nDepots; i++){
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
lhs.addTerm(1, a[i][k]);

GRBLinExpr rhs = new GRBLinExpr();
double lid = this.allLocations.get(i).returningTime;
rhs.addConstant(lid);

model.addConstr(lhs, GRB.LESS_EQUAL, rhs, "Constraint 12: " );
}//k
}//i

//Constraint 13: precedence constraint 1
for (int i = nDepots; i < this.allLocations.size(); i++){
for (int j = 0; j < this.allLocations.size(); j++){
if (i != j){
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
lhs.addTerm(1, a[j][k]);

GRBLinExpr rhs = new GRBLinExpr();
rhs.addTerm(1, a[i][k]);
double si = this.allLocations.get(i).serviceTime;
rhs.addConstant(si);

double dtij = (this.allLocations.get(i).distance + f.getDistance(dm, this.allLocations.get(i).nodeID, this.allLocations.get(j).nodeID))/speed;
rhs.addConstant(dtij);

rhs.addConstant(-M);
rhs.addTerm(M, x[i][j][k]);

model.addConstr(lhs, GRB.GREATER_EQUAL, rhs, "Constraint 13: ");
}//k
}//if
}//j
}//i

//Constraint 14: precedence constraint 2 - if previous node was depot
for (int i = 0; i < nDepots; i++){
for (int j = nDepots; j < this.allLocations.size(); j++){
for (int k = 0; k < this.vehicleList.size(); k++){

GRBLinExpr lhs = new GRBLinExpr();
lhs.addTerm(1, a[j][k]);

GRBLinExpr rhs = new GRBLinExpr();
rhs.addTerm(1, dep[i][k]);

double dtij = (this.allLocations.get(i).distance + f.getDistance(dm, this.allLocations.get(i).nodeID, this.allLocations.get(j).nodeID))/speed;

rhs.addConstant(dtij);

rhs.addConstant(-M);
rhs.addTerm(M, x[i][j][k]);

model.addConstr(lhs, GRB.GREATER_EQUAL, rhs, "Constraint 14: ");
}//for k
}//for j
}//for i

model.update();

//4. SET OBJECTIVE ---------------------------------------------------------------------------------------------------------------------------------------

GRBLinExpr expr = new GRBLinExpr();

for (int i = 0; i < this.allLocations.size(); i++){
for (int j = 0; j < this.allLocations.size(); j++){
if (i != j){
for (int k = 0; k < this.vehicleList.size(); k++){

double dtij = (this.allLocations.get(i).distance + f.getDistance(dm, this.allLocations.get(i).nodeID, this.allLocations.get(j).nodeID))/speed;
expr.addTerm(dtij, x[i][j][k]);
}//k
}//if
}//j
}//i

model.setObjective(expr, GRB.MINIMIZE);

model.update();

model.optimize();
System.out.println("is the solution feasible? " + model.get(GRB.IntAttr.Status));
model.write("constraintOutput.lp");

//5. CONSTRUCT SOLUTION ---------------------------------------------------------------------------------------------------------------------------------------------
double obj = model.get(GRB.DoubleAttr.ObjVal);

for (int i = 0; i < this.allLocations.size(); i++){
for (int j = 0; j < this.allLocations.size(); j++){
if (i != j){
for (int k = 0; k < this.vehicleList.size(); k++){

if (x[i][j][k].get(GRB.DoubleAttr.X) > 0){
System.out.println(x[i][j][k].get(GRB.StringAttr.VarName) + " " + x[i][j][k].get(GRB.DoubleAttr.X));
System.out.println("Node: " + (i+1) + " goes to node: " + (j+1) + " by vehicle: " + (k+1));
}//if
}//k
}//if
}//j
}//i

System.out.println("The objective value is: " + obj);


//6. DISPOSE OF MODEL AND ENVIRONMENT
model.dispose();
env.dispose();

}catch (GRBException e ){
e.printStackTrace();
}//catch
}//solution

}//公共(public)主要问题

最佳答案

arc (depot,j), j customer 的值是多少?我有一个观察:var x[i][j][k]的定义,当你定义二进制时,放(0和1),而不是(0.0和1.0),如下所示:

x[i][j][k] = model.addVar(0, 1, dij, GRB.BINARY, "X" + i + j + k)

关于java - Gurobi 模型最优但违反约束,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48826547/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com