gpt4 book ai didi

java - 组织命令行界面命令的好方法是什么?

转载 作者:太空宇宙 更新时间:2023-11-04 10:20:43 25 4
gpt4 key购买 nike

我在创建清晰简洁的代码时遇到了困难,这些代码允许我使用各种命令来执行各种不同的操作。例如,在我正在开发的 N 体模拟器中,我想要的功能是用户可以输入诸如 tele pos [x] [y] [z]tele celobj [celestial object name] 这样的命令。

为此,我根据空格的位置将输入字符串划分为标记数组。然后,我使用一系列 switch 语句,使得第一个单词 (tele) 在一层 switch 语句中处理,然后第二个单词 (poscelobj) 在第二层 switch 语句中处理。然后相应地处理下一个 token 。通过所有这些不同的层,我检查用户是否输入了有效的单词数,以避免超出范围的异常。

我的代码工作正常,但显然它很难阅读并且过于复杂。我并不是在寻找代码来帮助我,而是寻找用于组织命令系统或以最佳方式设置逻辑的概念策略。

我已经包含了我的源代码以防万一,但我希望我的描述足够清楚。

public static void process(String cmd) {
String tokenNotFound = "Token not recognized...";
String notEnoughInfo = "Not enough info given. Please specify...";
String unableToParse = "Unable to parse number...";

String[] tokens = cmd.toLowerCase().split("\\s+");
switch (tokens[0]) {
case "close":
run = false;
break;
case "toggle":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "render":
render = !render;
System.out.println("Render setting set to " + render);
break;
case "physics":
updatePhysics = !updatePhysics;
System.out.println("Physics update setting set to " + updatePhysics);
break;
case "trails":
showTrails = !showTrails;
System.out.println("Show trails setting set to " + showTrails);
break;
case "constellations":
showConstellations = !showConstellations;
System.out.println("Show constellations setting set to " + showConstellations);
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "get":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "fps":
System.out.println("FPS: " + realFPS);
break;
case "ups":
System.out.println("UPS: " + realUPS);
break;
case "cps":
System.out.println("CPS: " + realCPS);
break;
case "performance":
System.out.println("FPS: " + realFPS + " UPS: " + realUPS + " CPS: " + realCPS);
break;
case "time":
System.out.println(getTimestamp());
break;
case "celobj":
if (tokens.length >= 3) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}

if (objFound) {
if (tokens.length >= 4) {
switch (tokens[3]) {
case "pos":
Vec3d pos = chosenObj.getCelPos();
System.out.println("POSITION: X= " + pos.x + " Y= " + pos.y + " Z= " + pos.z);
break;
case "vel":
Vec3d vel = chosenObj.getCelVel();
if (tokens.length >= 5 && tokens[4].equals("mag"))
System.out.println("VELOCITY: V= " + vel.magnitude());
else
System.out.println("VELOCITY: X= " + vel.x + " Y= " + vel.y + " Z= " + vel.z);
break;
case "mass":
System.out.println("MASS: M= " + chosenObj.getMass());
break;
case "radius":
System.out.println("RADIUS: R= " + chosenObj.getRadius());
break;
default:
System.err.println(notEnoughInfo);
}
} else
System.err.println(notEnoughInfo);
} else
System.err.println(tokenNotFound);
} else {
//Print list of celObjs
StringBuilder celObjNames = new StringBuilder("Celestial Objects: \n");
for (CelObj celObj : physics.getCelObjs()) {
celObjNames.append('\t').append(celObj.getName()).append('\n');
}
System.out.println(celObjNames.toString());
}
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "set":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "cps":
if (tokens.length >= 3) {
try {
int newCPS = parseInt(tokens[2]);
realTime_to_simTime = newCPS * timeInc;
System.out.println("Target CPS set to " + newCPS);
System.out.println("The simulation time is " + realTime_to_simTime + " times the speed of real time");
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "scale":
if (tokens.length >= 3) {
try {
scale = parseFloat(tokens[2]);
System.out.println("Render object scale is now set to " + scale);
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "speed":
if (tokens.length >= 3) {
try {
speed = parseFloat(tokens[2]);
System.out.println("Speed is now set to " + speed);
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "record":
if (tokens.length >= 4) {
if (tokens[3].equals("period")) {
try {
int newCPS = parseInt(tokens[2]);
realTime_to_simTime = newCPS * timeInc;
System.out.println("Target CPS set to " + newCPS);
System.out.println("The recording period is now every " + realTime_to_simTime + " seconds");
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(tokenNotFound);

} else
System.err.println(notEnoughInfo);
break;
case "center":
if (tokens.length >= 3) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}

if (objFound) {
centerCelObj = chosenObj;
System.out.println(chosenObj.getName() + " has been set as the center");
} else
System.err.println(tokenNotFound);
} else
System.err.println(notEnoughInfo);
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "create":
//TODO:
break;
case "uncenter":
centerCelObj = null;
System.out.println("There is currently no center object");
break;
case "tele":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "pos":
if (tokens.length >= 5) {
try {
double x = parseDouble(tokens[2]);
double y = parseDouble(tokens[3]);
double z = parseDouble(tokens[4]);

Vec3f cameraPos = new Vec3f((float) x, (float) y, (float) z);

//If camera is locked to an object, then translating the camera will only
//do so with respect to that planet
//Hence, the camera is translated back to world coordinates by translating it
//the negative of its locked celObj position vector
if (camera.getLockedCelObj() != null) {
cameraPos.translate(
new Vec3f(
camera.getLockedCelObj().getCelPos()
).negate()
);
}

camera.setPosition(multiply(worldunit_per_meters, cameraPos));
System.out.println("The camera position has been set to X= " + x + " Y= " + y + " Z= " + z);
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "celobj":
if (tokens.length >= 3) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}

if (objFound) {
Vec3f celObjPos = new Vec3f(chosenObj.getCelPos());
Vec3f cameraPos = add(celObjPos, new Vec3f(0, (float) chosenObj.getRadius() * 2, 0));

//If camera is locked to an object, then translating the camera will only
//do so with respect to that planet
//Hence, the camera is translated back to world coordinates by translating it
//the negative of its locked celObj position vector
if (camera.getLockedCelObj() != null) {
cameraPos.translate(
new Vec3f(
camera.getLockedCelObj().getCelPos()
).negate()
);
}

//Make player 1 planet radius away from surface
camera.setPosition(multiply(worldunit_per_meters, cameraPos));
camera.setLookAt(multiply(worldunit_per_meters, celObjPos));

System.out.println("The camera position has been set to X= " + cameraPos.x + " Y= " + cameraPos.y + " Z= " + cameraPos.z);
} else
System.err.println(tokenNotFound);
} else
System.err.println(notEnoughInfo);
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "lock":
if (tokens.length >= 2) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[1])) {
objFound = true;
chosenObj = celObj;
}
}

if (objFound) {
camera.setLockedCelObj(chosenObj);
camera.setPosition(new Vec3f(0, 0, 0));
System.out.println("The camera has been locked to " + chosenObj.getName());
System.out.println("Type 'unlock' to revert back to unlocked status");
} else
System.err.println(tokenNotFound);
} else
System.err.println(notEnoughInfo);
break;
case "unlock":
String celObjName = camera.getLockedCelObj().getName();
//If camera is locked to an object, then translating the camera will only
//do so with respect to that planet
//Hence, the camera is translated back to world equivalent of where it is in
//that celObj's space by translating it the celObj's position
camera.setPosition(
add(
multiply(worldunit_per_meters,
(new Vec3f(camera.getLockedCelObj().getCelPos()))),
camera.getPosition()
)
);
camera.setLockedCelObj(null);
System.out.println("The camera has been unlocked from " + celObjName);
Vec3f pos = camera.getPosition();
System.out.println("The camera position has been set to X= " + pos.x + " Y= " + pos.y + " Z= " + pos.z);
break;
case "lookat":
if (tokens.length >= 3) {
switch (tokens[1]) {
case "celobj":
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}

if (objFound) {
camera.setLookAt(new Vec3f(multiply(worldunit_per_meters, chosenObj.getCelPos())));
System.out.println("The camera is now looking at " + chosenObj.getName());
} else
System.err.println(tokenNotFound);
break;
}
} else
System.err.println(notEnoughInfo);
break;
default:
System.err.println(tokenNotFound);
}
}

最佳答案

你的直觉是对的。您拥有的代码确实可以通过以某种方式分解成更小的部分而受益。实现这一目标的一个好方法是使其更加由数据驱动。对一长串命令进行编码的一种方法是使用 switch 语句,但问题是命令越多,语句就会变得越来越长。数据驱动方法将命令名称及其背后的代码视为数据,并将命令列表与解析和执行命令的代码分开。

让我们从一个代表命令处理程序的简单界面开始。这是一个函数,它接受命令的参数,然后执行命令执行的任何操作。

public interface CommandHandler {
public void handle(List<String> arguments);
}

然后让我们让 process() 函数成为数据驱动的。现在,我们来处理前两个命令,“关闭”和“切换”。我们将从简单的开始,看看这个想法是否有意义,然后在我们大致了解我们想要做什么后充实实现。

我们将创建一个命令名称与其处理程序的映射。这将为我们提供一个紧凑的命令列表,每个命令背后的代码分为单独的回调函数。如果您不熟悉,Commands::close 是一个方法引用。它为我们提供了一个 CommandHandler 对象,该对象调用 Commands.close() 方法,我们稍后将定义该方法。

public static void process(String input) {
Map<String, CommandHandler> commands = new HashMap<>();
commands.put("close", Commands::close);
commands.put("toggle", Commands::toggle);

List<String> tokens = Arrays.asList(input.toLowerCase().split("\\s+"));
process(tokens, commands);
}

看起来不错。它又短又甜。它将输入字符串拆分为标记,但这就是它所做的全部工作。其余的则推迟到第二个 process() 方法。我们现在就这样写:

public static void process(List<String> tokens, Map<String, CommandHandler> commands) {
String command = tokens.get(0);
List<String> arguments = tokens.subList(1, tokens.size());

CommandHandler handler = commands.get(command);

if (handler != null) {
handler.handle(arguments)
}
}

这是命令解析逻辑的核心。它在映射中查找命令,如果找到则执行相应的处理程序。好处是这个方法不知道任何特定命令的任何信息。这一切都非常通用。

它还设置为支持子命令。注意它是如何获取 token 列表的吗?它如何将参数保存在单独的子列表中?这样做意味着它不仅可以为顶级命令调用,还可以为“render”等子命令调用。

最后一个难题是定义每个命令处理程序。我已将它们放入自己的类中,但您不必这样做。这些都可以是你原来的类中的方法(我只是不知道你命名它是什么)。

public class Commands {
public static void close(List<String> arguments) {
run = false;
}

public static void toggle(List<String> arguments) {
if (arguments.length == 0) {
System.err.println(notEnoughInfo);
return;
}

Map<String, CommandHandler> subCommands = new HashMap<>();

subCommands.put("render", arguments -> {
render = !render;
System.out.println("Render setting set to " + render);
});

subCommands.put("physics", arguments -> {
updatePhysics = !updatePhysics;
System.out.println("Physics update setting set to " + updatePhysics);
});

subCommands.put("trails", arguments -> {
showTrails = !showTrails;
System.out.println("Show trails setting set to " + showTrails);
});

subCommands.put("constellations", arguments -> {
showConstellations = !showConstellations;
System.out.println("Show constellations setting set to " + showConstellations);
});

process(arguments, subCommands);
}
}

toggle() 显示子命令解析。就像上面的代码一样,它创建子命令的映射并注册它们的名称和处理程序。就像上面一样,它调用与之前相同的 process() 函数。

这一次,由于处理程序都非常简单,因此没有必要将它们分解为单独的命名函数。我们可以使用匿名 lambda 来内联注册处理程序。就像 Commands::close 之前所做的那样,arguments -> { code } 创建一个 CommandHandler 内联。

关于java - 组织命令行界面命令的好方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51201059/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com