gpt4 book ai didi

Python:根据点值制作一致的 3D 图

转载 作者:太空宇宙 更新时间:2023-11-04 10:12:29 25 4
gpt4 key购买 nike

在 2D 平面中,我有一组 nxn 点,这些点由它们的 (x,y) 坐标定义。对于每个点,都存在一定数量,我想将其绘制为 3D 表面。我怎样才能在图中为每个点分配相关值?我问是因为我的情节一团糟。

我会更好地解释自己。我有:

  1. 10x10=100 点在平面中的位置字典:

dict1={0:(0, 0), 1:(0, 1), 2:(0, 2), ..., 99:(9,9)}

  1. 将与所述点相关联的值字典:

dict2=OrderedDict([(0, 369670), (1, 370622), (2, 267034), ..., (99, 217500)])

  1. dict1dict2 的合并,其中每个值都与正确的点相关联,每个点都根据其坐标进行标记:

merged_dict={dict1[k]: v for k, v in dict2.items()}

merged_dict={(0,0):369670, (0,1):370622, (0,2):267034, ..., (9,9): 217500}

预期的 3D 图具有来自 merged_dict 的 X、Y 和 Z 点坐标。这是我的尝试:

#3D plot
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

fig = plt.figure()
ax = fig.gca(projection='3d')
inds=[(0, 0), (0, 1), (0, 2), ..., (9,9)] #The coordinates of each point -> len(inds)=100

X=[]
for k in range(len(inds)):
X.append(int(inds[k][0]))
Y=X

X, Y = np.meshgrid(X, Y)

merged_dict = {dict1[k]: v for k, v in dict2.items()}

Z = merged_dict.values()

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter, linewidth=0, antialiased=True)

ax.set_zlim(0, 900000)

ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

plt.show()

我得到的图是错误的,因为它的表面很乱。预期结果是一个对称的钟形表面,峰值超过 800,000,与点 (4,4)、(5,4)、(4,5)、(5,5) 相对应。相反,结果让我认为 Z 值与相关的 X、Y 坐标没有正确关联。 如何解决这个问题? enter image description here

编辑

这些是涉及的实际数据:

In[1]: merged_dict
Out[1]:
{(0, 0): 369670,
(0, 1): 370622,
(0, 2): 267034,
(0, 3): 169500,
(0, 4): 116014,
(0, 5): 116014,
(0, 6): 169500,
(0, 7): 267034,
(0, 8): 370622,
(0, 9): 369670,
(1, 0): 370622,
(1, 1): 491950,
(1, 2): 456750,
(1, 3): 370180,
(1, 4): 308118,
(1, 5): 308118,
(1, 6): 370180,
(1, 7): 456750,
(1, 8): 491950,
(1, 9): 370622,
(2, 0): 267034,
(2, 1): 456750,
(2, 2): 542718,
(2, 3): 554980,
(2, 4): 543588,
(2, 5): 543588,
(2, 6): 554980,
(2, 7): 542718,
(2, 8): 456750,
(2, 9): 267034,
(3, 0): 169500,
(3, 1): 370180,
(3, 2): 554980,
(3, 3): 689848,
(3, 4): 759272,
(3, 5): 759272,
(3, 6): 689848,
(3, 7): 554980,
(3, 8): 370180,
(3, 9): 169500,
(4, 0): 116014,
(4, 1): 308118,
(4, 2): 543588,
(4, 3): 759272,
(4, 4): 888268,
(4, 5): 888268,
(4, 6): 759272,
(4, 7): 543588,
(4, 8): 308118,
(4, 9): 116014,
(5, 0): 116014,
(5, 1): 308118,
(5, 2): 543588,
(5, 3): 759272,
(5, 4): 888268,
(5, 5): 888268,
(5, 6): 759272,
(5, 7): 543588,
(5, 8): 308118,
(5, 9): 116014,
(6, 0): 169500,
(6, 1): 370180,
(6, 2): 554980,
(6, 3): 689848,
(6, 4): 759272,
(6, 5): 759272,
(6, 6): 689848,
(6, 7): 554980,
(6, 8): 370180,
(6, 9): 169500,
(7, 0): 267034,
(7, 1): 456750,
(7, 2): 542718,
(7, 3): 554980,
(7, 4): 543588,
(7, 5): 543588,
(7, 6): 554980,
(7, 7): 542718,
(7, 8): 456750,
(7, 9): 267034,
(8, 0): 370622,
(8, 1): 491950,
(8, 2): 456750,
(8, 3): 370180,
(8, 4): 308118,
(8, 5): 308118,
(8, 6): 370180,
(8, 7): 456750,
(8, 8): 491950,
(8, 9): 370622,
(9, 0): 369670,
(9, 1): 370622,
(9, 2): 267034,
(9, 3): 169500,
(9, 4): 116014,
(9, 5): 116014,
(9, 6): 169500,
(9, 7): 267034,
(9, 8): 370622,
(9, 9): 369670}

最佳答案

我猜 Y=X 行有问题。 X, Y 是列表。当您编写 Y=X 时,这意味着 Y 是对 X 的引用。您需要制作一份副本,即:

Y = []
numpy.copy(Y,X)

测试这个变体并写下会发生什么。否则将 merged_dict 的数据发布到真实值上的测试图。

更新:

看图,对不对?数组 Z 必须是二维数组,但在您的代码中它是一维列表。

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

fig = plt.figure()
ax = fig.gca(projection='3d')

X = np.arange(0,10,1)
Y = np.arange(0,10,1)
X, Y = np.meshgrid(X, Y)
merged_dict = {(0, 0): 369670,
(0, 1): 370622,
(0, 2): 267034,
...
(9, 8): 370622,
(9, 9): 369670}

Z = np.array(merged_dict.values()).reshape(10,10)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter, linewidth=0, antialiased=True)
ax.set_zlim(0, 900000)

plt.show()

enter image description here

更新 2:

问题是因为你的数据存储在字典中,但字典没有按索引排序。将值加载到数组 Z:

Z = np.zeros((10,10))

for key in merged_dict:
i = key[0]
j = key[1]
Z[i][j] = int(merged_dict[key])

结果,您得到:

enter image description here

关于Python:根据点值制作一致的 3D 图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37485382/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com