- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个大的 numpy 数组,维度为 [1]
。我想找出一种“群体平均”。更具体地说,
让我的数组为 [1,2,3,4,5,6,7,8,9,10]
让我的 group_size
为 3
。因此,我将对前三个元素、第 4 到第 6 个元素、第 7 到第 9 个元素进行平均,并对剩余元素进行平均(在这种情况下只有 1 个才能得到 - [2, 5, 8, 10]
。不用说,我需要一个向量化的实现。
最后,我的目的是减少噪声图中的点数,以平滑具有大量振荡的一般模式。有没有正确的方法来做到这一点?我想要这两个问题的答案,以防他们有不同的答案。谢谢!
最佳答案
一个好的平滑函数是 kernel convolution .它的作用是将移动窗口中的小数组乘以较大的数组。
假设您选择了 1/3 * [1,1,1]
的标准平滑内核并将其应用于数组(内核需要奇数编号并进行归一化)。让我们将它应用于 [1,2,2,7,3,4,9,4,5,6]
:
开始的内核中心位于第一个 2
上。然后它对自己和它的邻居进行平均,然后继续前进。结果是这样的:[1.67, 3.67, 4.0, 4.67, 5.33, 5.67, 6.0, 5.0]
请注意,数组缺少第一个和最后一个元素。
您可以使用 numpy.convolve 执行此操作,例如:
import numpy as np
a = np.array([[1,2,2,7,3,4,9,4,5,6]])
k = np.array([1,1,1])/3
smoothed = np.convolve(x, k, 'valid')
这样做的效果是您的中心值与其邻居的值平滑。您可以通过增加卷积核的大小来更改它,例如 5 [1,1,1,1,1]/5
,或者给它一个高斯分布,这将使中央成员的压力超过外面的。阅读维基百科文章。
编辑
这可以按照问题的要求获得 block 平均值:
import numpy as np
a = [1,2,3,4,5,6,7,8,9,10]
size = 3
new_a = []
i = 0
while i < len(a):
val = np.mean(a[i:i+3])
new_a.append(val)
i+=size
print(new_a)
[2.0, 5.0, 8.0, 10.0]
关于python - numpy 数组的组平均值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41157482/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!