- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试创建两个顺序模型(每个模型都在不同的数据集 - 不同的图像上进行训练)。然后我想取它们输出的平均值,并添加一个 softmax 层以根据两个顺序模型给我一个单一的分类输出。我的代码在下面,但我收到一个属性错误,指出“顺序”对象没有属性“get_shape”。
完整的错误代码是:
Traceback (most recent call last):
File "Mergedmodels.pyu", line 135, in <module>
merged = average ([modelo, modelN1])
File "G:\Anaconda\lib\site-packages\keras\layers\merge.py", line 481, in average
return Average(**kwargs)(inputs)
File "G:\Anaconda\lib\site-packages\keras\engine\topology.py", line 542, in _ call_input_shapes.append(K.int_sshape(x_elem))
File "G:\Anaconda\lib\site-packages\keras\backend\tensorflow_backend.py", line 411, in int_shape
shape = x.get_shape()
AttributeError: 'Sequential' object has no attribute 'get_shape'
关于如何修复它有任何想法吗?
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import merge
from keras.layers import average
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.datasets import mnist
import pandas as pd
from numpy import array
from PIL import Image
import matplotlib.pyplot as plt
from keras import backend as K
import glob
import os
K.set_image_dim_ordering('th')
np.random.seed(123) #set for reproducibility
size = 48, 48
#IMPORTING TRAINING IMAGES FOR FIRST MODEL (ORIGINAL)
folder = 'images'
read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))
ims = [read(os.path.join(folder, filename)) for filename in os.listdir(folder)]
X_train = np.array([read(os.path.join(folder, filename)) for filename in os.listdir(folder)], dtype='uint8')
#CHECK print (X_train.shape)
X_train = X_train.reshape(X_train.shape[0],3,48,48)
#X_test = X_test.reshape(X_test.shape[0],1,28,28)
X_train = X_train.astype ('float32')
#X_test = X_test.astype ('float32')
X_train /= 255
#X_test /= 255
#IMPORTING TRAINING IMAGES FOR SECOND MODEL (NORMALIZED)
folder = 'images2'
read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))
ims = [read(os.path.join(folder, filename)) for filename in os.listdir(folder)]
X_training = np.array([read(os.path.join(folder, filename)) for filename in os.listdir(folder)], dtype='uint8')
#CHECK print (X_train.shape)
X_training = X_training.reshape(X_train.shape[0],3,48,48)
#X_test = X_test.reshape(X_test.shape[0],1,28,28)
X_training = X_training.astype ('float32')
#X_test = X_test.astype ('float32')
X_training /= 255
#X_test /= 255
#IMPORTING LABELS FOR 10K TRAINING IMAGES
saved_column = pd.read_csv('labels4.csv')
y_labels = array(saved_column)
Y_train = np_utils.to_categorical(y_labels,501)
#y_train = np.array ([0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1])
#(X_train, y_train),(X_test, y_test) = mnist.load_data()
#COPYING LABELS FOR SECOND MODEL TRAINING IMAGES
#Y_training = Y_train
#IMPORTING TEST IMAGES
folder2 = 'test'
read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))
ims = [read(os.path.join(folder2, filename)) for filename in os.listdir(folder2)]
X_test = np.array([read(os.path.join(folder2, filename)) for filename in os.listdir(folder2)], dtype='uint8')
X_test = X_test.reshape(X_test.shape[0],3,48,48)
X_test = X_test.astype ('float32')
X_test /= 255
#IMPORTING LABELS FOR TEST IMAGES
another_column = pd.read_csv('labelstest4.csv')
test_labels = array(another_column)
Y_test = np_utils.to_categorical(test_labels,501)
#train_labels = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1])
#Y_train = np_utils.to_categorical(y_train, 2)
#Y_test = np_utils.to_categorical(y_test,10)
#BUILDING FIRST NN FOR ORIGINAL IMAGES
modelo = Sequential()
modelo.add(Convolution2D(32,3,3, activation='relu', input_shape=(3,48,48), dim_ordering='th'))
modelo.add(Convolution2D(32,3,3, activation = 'relu'))
modelo.add(MaxPooling2D(pool_size=(2,2)))
modelo.add(Dropout(0.25))
modelo.add(Flatten())
modelo.add(Dense(128,activation='relu'))
modelo.add(Dropout(0.5))
modelo.add(Dense(501, activation = 'sigmoid'))
modelo.compile(loss='categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
modelo.fit(X_train, Y_train,
batch_size = 5, nb_epoch= 5, verbose = 1)
score = modelo.evaluate(X_test, Y_test, verbose=0)
#BUILDING SECOND NN FOR NORMALIZED IMAGES
modelN1 = Sequential()
modelN1.add(Convolution2D(32,3,3, activation='relu', input_shape=(3,48,48), dim_ordering='th'))
modelN1.add(Convolution2D(32,3,3, activation = 'relu'))
modelN1.add(MaxPooling2D(pool_size=(2,2)))
modelN1.add(Dropout(0.25))
modelN1.add(Flatten())
modelN1.add(Dense(128,activation='relu'))
modelN1.add(Dropout(0.5))
modelN1.add(Dense(501, activation = 'sigmoid'))
modelN1.compile(loss='categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
modelN1.fit(X_training, Y_train,
batch_size = 5, nb_epoch= 1, verbose = 1)
score = modelN1.evaluate(X_test, Y_test, verbose=0)
#MERGING MODELS
merged = average([modelo, modelN1])
finalmodel = Sequential ()
finalmodel.add(merged)
finalmodel.add(Dense(501, activation = 'softmax'))
finalmodel.compile(loss='categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
Y_madeuplabels = np.array ([0, 1, 52, 20])
Y_training = np_utils.to_categorical(Y_madeuplabels, 501)
finalmodel.fit([X_train], Y_training,
batch_size = 5, nb_epoch= 1, verbose = 1)
score = finalmodel.evaluate(X_test, Y_test, verbose=0)
print ("the code ran")
最佳答案
这种组合顺序模型的方式在Keras 2.0中似乎行不通自 average适用于张量,而不是层。这就是错误消息说 Sequential 模型没有get_shape()
方法的原因; get_shape()
仅存在于张量上。
这是一个复制错误的示例:
mod1 = Sequential()
mod1.add(Dense(1, input_shape=(10,)))
mod2 = Sequential()
mod2.add(Dense(1, input_shape=(10,)))
avg = average([mod1, mod2]) # throws AttributeError
解决这个问题的一个 hacky 方法是使用 functional API结合两个模型的输出,然后做 softmax 层。例如:
X1 = np.random.rand(10, 10)
X2 = np.random.rand(10, 10)
Y = np.random.choice(2, 10)
mod1 = Sequential()
mod1.add(Dense(16, input_shape=(10,)))
mod2 = Sequential()
mod2.add(Dense(16, input_shape=(10,)))
# so use the outputs of the models to do the average over
# this way we do averaging over tensor __not__ models.
avg = average([mod1.output, mod2.output])
dense = Dense(1, activation="sigmoid")(avg)
# the two inputs are the inputs to the sequential models
# and the output is the dense layer
mod3 = Model(inputs=[mod1.input, mod2.input], outputs=[dense])
mod3.compile(loss='binary_crossentropy', optimizer='sgd')
mod3.fit([X1, X2], Y)
关于python - 属性错误 : 'Sequential' no attribute 'get_shape' when merging models,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43785761/
我对 mongoosejs 中模型的使用感到有些困惑。 可以通过这些方式使用 mongoose 创建模型 使用 Mongoose var mongoose = require('mongoose');
我正在看 from django.db import models class Publisher(models.Model): name = models.CharField(max_len
我有自己的 html 帮助器扩展,我用这种方式 model.Reason_ID, Register.PurchaseReason) %> 这样声明的。 public static MvcHtmlS
假设模型原本是存储在CPU上的,然后我想把它移到GPU0上,那么我可以这样做: device = torch.device('cuda:0') model = model.to(device) # o
我过去读过一些关于模型的 MVC 建议,指出不应为域和 View 重用相同的模型对象;但我找不到任何人愿意讨论为什么这很糟糕。 我认为创建两个单独的模型 - 一个用于域,一个用于 View - 然后在
我正在使用pytorch构建一个像VGG16这样的简单模型,并且我已经重载了函数forward在我的模型中。 我发现每个人都倾向于使用 model(input)得到输出而不是 model.forwar
tf.keras API 中的 models 是否多余?对于某些情况,即使不使用 models,代码也能正常运行。 keras.models.sequential 和 keras.sequential
当我尝试使用 docker 镜像运行 docker 容器时遇到问题:tensorflow/serving。 我运行命令: docker run --name=tf_serving -it tensor
我有一个模型,我用管道注册了它: register_step = PythonScriptStep(name = "Register Model",
如果 View 需要访问模型中的数据,您是否认为 Controller 应: a)将模型传递给 View b)将模型的数据传递给 View c)都不;这不应该是 Controller 所关心的。让 V
我正在寻找一个可以在模型中定义的字段,该字段本质上是一个列表,因为它将用于存储多个字符串值。显然CharField不能使用。 最佳答案 您正在描述一种多对一的关系。这应该通过一个额外的 Model 进
我最近了解了 Django 中的模型继承。我使用很棒的包 django-model-utils 取得了巨大的成功。我继承自 TimeStampedModel 和 SoftDeletableModel。
我正在使用基于 resnet50 的双输出模型进行项目。一个输出用于回归任务,第二个输出用于分类任务。 我的主要问题是关于模型评估。在训练期间,我在验证集的两个输出上都取得了不错的结果: - 综合损失
我是keras的新手。现在,我将使用我使用 model.fit_generator 训练的模型来预测测试图像组。我可以使用 model.predict 吗?不确定如何使用model.predict_g
在 MVC 应用程序中,我加入了多个表并将其从 Controller 返回到 View,如下所示: | EmployeeID | ControlID | DoorAddress | DoorID |
我在使用 sails-cassandra 连接系统的 Sails 中有一个 Data 模型。数据。 Data.count({...}).exec() 返回 1,但 Data.find({...}).e
我正在使用 PrimeFaces dataTable 开发一个 jsf 页面来显示用户列表。用户存储在 Model.User 类的对象中。
我正在关注https://www.tensorflow.org/tutorials/keras/basic_classification解决 Kaggle 挑战。 但是,我不明白应该将什么样的数据输入
我是这个领域的新手。那么,你们能帮忙如何为 CNN 创建 .config 文件吗? 传递有关如何执行此操作的文档或教程将对我有很大帮助。谢谢大家。 最佳答案 这个问题对我来说没有多大意义,因为 .co
我是“物理系统建模”主题的新手。我阅读了一些基础文献,并在 Modelica 和 Simulink/Simscape 中做了一些教程。我想问你,如果我对以下内容理解正确: 符号操作是将微分代数方程组(
我是一名优秀的程序员,十分优秀!