gpt4 book ai didi

python - 如何随机移动 numpy 数组的行

转载 作者:太空宇宙 更新时间:2023-11-04 09:59:53 24 4
gpt4 key购买 nike

我正在寻找一种更 pythonic 的方式来随机移动 numpy 数组的行。我的想法是我有一个数据数组,我想将数组的每一行左移一个随机量。我的解决方案有效,但我觉得有点不符合 Python 风格:

def shift_rows(data, max_shift):
"""Left-shifts each row in `data` by a random amount up to `max_shift`."""
return np.array([np.roll(row, -np.random.randint(0, max_shift)) for row in data])

并测试:

data = np.array([np.arange(0, 5) for _ in range(10)])  # toy data to illustrate
shifted = shift_rows(data, max_shift=5)
shifted
# array([1, 2, 3, 4, 0],
# [1, 2, 3, 4, 0],
# [0, 1, 2, 3, 4],
# ...
# [4, 0, 1, 2, 3]])

这实际上更像是一个思想实验。任何人都可以想出一种更有效或更 pythonic 的方式来做到这一点吗?我想列表理解是 pythonic,但如果我需要在一个巨大的数组上执行此操作,这是否有效?

编辑:我将 Divakar 的出色回复标记为答案,但如果有人有任何其他想法,我仍然很想听听。

最佳答案

一次生成所有行的所有列索引,然后简单地使用 integer-indexing对于矢量化解决方案,就像这样 -

# Store shape of input array
m,n = data.shape

# Get random column start indices for each row in one go
col_start = np.random.randint(0, max_shift, data.shape[0])

# Get the rolled indices for every row again in a vectorized manner.
# We are extending col_start to 2D and then adding a range array to get
# all column indices for every row by leveraging NumPy's braodcasting.
# Because of the additions, we might go off-limits. So, to simulate the
# rolled over version, mod it.
idx = np.mod(col_start[:,None] + np.arange(n), n)

# Finall with integer indexing get the values off data array
shifted_out = data[np.arange(m)[:,None], idx]

一步步运行-

1] 输入:

In [548]: data
Out[548]:
array([[44, 23, 38, 32, 30],
[69, 15, 32, 41, 63],
[69, 41, 75, 50, 87],
[23, 28, 38, 79, 91]])

In [549]: max_shift = 5

2] 建议的解决方案:

2A] 获取列开始:

In [550]: m,n = data.shape

In [551]: col_start = np.random.randint(0, max_shift, data.shape[0])

In [552]: col_start
Out[552]: array([1, 2, 3, 3])

2B] 获取所有索引:

In [553]: idx = np.mod(col_start[:,None] + np.arange(n), n)

In [554]: col_start[:,None]
Out[554]:
array([[1],
[2],
[3],
[3]])

In [555]: col_start[:,None] + np.arange(n)
Out[555]:
array([[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7],
[3, 4, 5, 6, 7]])

In [556]: np.mod(col_start[:,None] + np.arange(n), n)
Out[556]:
array([[1, 2, 3, 4, 0],
[2, 3, 4, 0, 1],
[3, 4, 0, 1, 2],
[3, 4, 0, 1, 2]])

2C] 最后对数据进行索引:

In [557]: data[np.arange(m)[:,None], idx]
Out[557]:
array([[23, 38, 32, 30, 44],
[32, 41, 63, 69, 15],
[50, 87, 69, 41, 75],
[79, 91, 23, 28, 38]])

验证-

1] 原始方法:

In [536]: data = np.random.randint(11,99,(4,5))
...: max_shift = 5
...: col_start = -np.random.randint(0, max_shift, data.shape[0])
...: for i,row in enumerate(data):
...: print np.array([np.roll(row, col_start[i])])
...:
[[83 93 17 53 61]]
[[55 88 84 94 89]]
[[59 63 29 72 85]]
[[57 95 13 21 14]]

2] 重新使用 col_start 的建议方法,以便我们可以进行值验证:

In [537]: m,n = data.shape

In [538]: idx = np.mod(-col_start[:,None] + np.arange(n), n)

In [539]: data[np.arange(m)[:,None], idx]
Out[539]:
array([[83, 93, 17, 53, 61],
[55, 88, 84, 94, 89],
[59, 63, 29, 72, 85],
[57, 95, 13, 21, 14]])

关于python - 如何随机移动 numpy 数组的行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44146276/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com