gpt4 book ai didi

python - 从 GridSearchCV 中为 cross_val_predict 提取最佳管道

转载 作者:太空宇宙 更新时间:2023-11-04 09:57:38 29 4
gpt4 key购买 nike

如何从合适的 GridSearchCV 中提取最佳管道,以便将其传递给 cross_val_predict

直接传递适合的GridSearchCV对象导致cross_val_predict再次运行整个网格搜索,我只想让最好的pipeline受制于cross_val_predict 评估。

我的独立代码如下:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import StratifiedKFold
from sklearn import metrics

# fetch data data
newsgroups = fetch_20newsgroups(remove=('headers', 'footers', 'quotes'), categories=['comp.graphics', 'rec.sport.baseball', 'sci.med'])
X = newsgroups.data
y = newsgroups.target

# setup and run GridSearchCV
wordvect = TfidfVectorizer(analyzer='word', lowercase=True)
classifier = OneVsRestClassifier(SVC(kernel='linear', class_weight='balanced'))
pipeline = Pipeline([('vect', wordvect), ('classifier', classifier)])
scoring = 'f1_weighted'
parameters = {
'vect__min_df': [1, 2],
'vect__max_df': [0.8, 0.9],
'classifier__estimator__C': [0.1, 1, 10]
}
gs_clf = GridSearchCV(pipeline, parameters, n_jobs=8, scoring=scoring, verbose=1)
gs_clf = gs_clf.fit(X, y)

### outputs: Fitting 3 folds for each of 12 candidates, totalling 36 fits

# manually extract the best models from the grid search to re-build the pipeline
best_clf = gs_clf.best_estimator_.named_steps['classifier']
best_vectorizer = gs_clf.best_estimator_.named_steps['vect']
best_pipeline = Pipeline([('best_vectorizer', best_vectorizer), ('classifier', best_clf)])

# passing gs_clf here would run the grind search again inside cross_val_predict
y_predicted = cross_val_predict(pipeline, X, y)
print(metrics.classification_report(y, y_predicted, digits=3))

我目前正在做的是从 best_estimator_ 手动重建管道。但是我的管道通常有更多的步骤,例如 SVD 或 PCA,有时我会添加或删除步骤并重新运行网格搜索来探索数据。在下面手动重建管道时,必须始终重复此步骤,这很容易出错。

有没有办法直接从拟合 GridSearchCV 中提取最佳管道,以便我可以将其传递给 cross_val_predict

最佳答案

y_predicted = cross_val_predict(gs_clf.best_estimator_, X, y)

作品与返回:

Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=4)]: Done 36 out of 36 | elapsed: 43.6s finished
precision recall f1-score support

0 0.920 0.911 0.916 584
1 0.894 0.943 0.918 597
2 0.929 0.887 0.908 594

avg / total 0.914 0.914 0.914 1775

[编辑] 当我再次尝试仅传递 pipeline(原始管道)的代码时,它返回相同的输出(传递 best_pipeline 也是如此)。因此,您可以只使用管道本身,但我并不是 100% 同意这一点。

关于python - 从 GridSearchCV 中为 cross_val_predict 提取最佳管道,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45151043/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com