gpt4 book ai didi

python - tensorflow 中的成本函数输出 'nan'

转载 作者:太空宇宙 更新时间:2023-11-04 09:57:04 24 4
gpt4 key购买 nike

在学习tensorflow的过程中遇到了一个问题。
成本函数输出“nan”。

而且,如果您在源代码中发现任何其他错误,请告诉我它的链接。

我正在尝试将成本函数值发送到我的训练模型,但它不起作用。

tf.reset_default_graph()

tf.set_random_seed(777)

X = tf.placeholder(tf.float32, [None, 20, 20, 3])
Y = tf.placeholder(tf.float32, [None, 1])

with tf.variable_scope('conv1') as scope:
W1 = tf.Variable(tf.random_normal([4, 4, 3, 32], stddev=0.01), name='weight1')
L1 = tf.nn.conv2d(X, W1, strides=[1, 1, 1, 1], padding='SAME')
L1 = tf.nn.relu(L1)
L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
L1 = tf.reshape(L1, [-1, 10 * 10 * 32])

W1_hist = tf.summary.histogram('conv_weight1', W1)
L1_hist = tf.summary.histogram('conv_layer1', L1)

with tf.name_scope('fully_connected_layer1') as scope:
W2 = tf.get_variable('W2', shape=[10 * 10 * 32, 1], initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.random_normal([1]))
hypothesis = tf.matmul(L1, W2) + b

W2_hist = tf.summary.histogram('fully_connected_weight1', W2)
b_hist = tf.summary.histogram('fully_connected_bias', b)
hypothesis_hist = tf.summary.histogram('hypothesis', hypothesis)

with tf.name_scope('cost') as scope:
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
cost_summary = tf.summary.scalar('cost', cost)

with tf.name_scope('train_optimizer') as scope:
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost)

predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
accuracy_summary = tf.summary.scalar('accuracy', accuracy)

train_data_batch, train_labels_batch = tf.train.batch([train_data, train_labels], enqueue_many=True , batch_size=100, allow_smaller_final_batch=True)

with tf.Session() as sess:
# tensorboard --logdir=./logs/planesnet2_log
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter('./logs/planesnet2_log')
writer.add_graph(sess.graph)

sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
total_cost = 0

for step in range(20):
x_batch, y_batch = sess.run([train_data_batch, train_labels_batch])
feed_dict = {X: x_batch, Y: y_batch}
_, cost_val = sess.run([optimizer, cost], feed_dict = feed_dict)
total_cost += cost_val
print('total_cost: ', total_cost, 'cost_val: ', cost_val)
coord.request_stop()
coord.join(threads)

最佳答案

您对假设 使用了没有 sigmoid 激活函数的交叉熵损失,因此您的值不受 ]0,1] 的限制。 log 函数没有为负值定义,它很可能会得到一些。添加 S 形和 epsilon 因子以避免负值或 0 值,你应该没问题。

关于python - tensorflow 中的成本函数输出 'nan',我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45368931/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com