- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想将投票分类器应用于多个管道分类器并在网格搜索中调整参数。下面的最小示例给了我一个错误。我必须以不同的方式执行此操作吗?
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import VotingClassifier
p1 = Pipeline([['clf1', RandomForestClassifier()]])
p2 = Pipeline([['clf2', AdaBoostClassifier()]])
p3 = Pipeline([['clf3', VotingClassifier(estimators=(p1, p2))]])
p3.get_params()
错误:
TypeError: cannot convert dictionary update sequence element #0 to a sequence
最佳答案
当您为 VotingClassifier
指定估计器时,您需要为每个估计器命名:
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import VotingClassifier
p1 = Pipeline([['clf1', RandomForestClassifier()]])
p2 = Pipeline([['clf2', AdaBoostClassifier()]])
p3 = Pipeline([['clf3', VotingClassifier(estimators=[("p1",p1), ("p2",p2)])]])
p3.get_params()
这将输出:
{'clf3': VotingClassifier(estimators=[('p1', Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction...SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]))],
n_jobs=1, voting='hard', weights=None),
'clf3__estimators': [('p1',
Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)]])),
('p2',
Pipeline(steps=[['clf2', AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]))],
'clf3__n_jobs': 1,
'clf3__p1': Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)]]),
'clf3__p1__clf1': RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False),
'clf3__p1__clf1__bootstrap': True,
'clf3__p1__clf1__class_weight': None,
'clf3__p1__clf1__criterion': 'gini',
'clf3__p1__clf1__max_depth': None,
'clf3__p1__clf1__max_features': 'auto',
'clf3__p1__clf1__max_leaf_nodes': None,
'clf3__p1__clf1__min_impurity_split': 1e-07,
'clf3__p1__clf1__min_samples_leaf': 1,
'clf3__p1__clf1__min_samples_split': 2,
'clf3__p1__clf1__min_weight_fraction_leaf': 0.0,
'clf3__p1__clf1__n_estimators': 10,
'clf3__p1__clf1__n_jobs': 1,
'clf3__p1__clf1__oob_score': False,
'clf3__p1__clf1__random_state': None,
'clf3__p1__clf1__verbose': 0,
'clf3__p1__clf1__warm_start': False,
'clf3__p1__steps': [['clf1',
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)]],
'clf3__p2': Pipeline(steps=[['clf2', AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]),
'clf3__p2__clf2': AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None),
'clf3__p2__clf2__algorithm': 'SAMME.R',
'clf3__p2__clf2__base_estimator': None,
'clf3__p2__clf2__learning_rate': 1.0,
'clf3__p2__clf2__n_estimators': 50,
'clf3__p2__clf2__random_state': None,
'clf3__p2__steps': [['clf2',
AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]],
'clf3__voting': 'hard',
'clf3__weights': None,
'steps': [['clf3',
VotingClassifier(estimators=[('p1', Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction...SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]))],
n_jobs=1, voting='hard', weights=None)]]}
关于python - 在 Sklearn 管道中使用 VotingClassifier,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46793110/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!