gpt4 book ai didi

python - BasicRNNCell 中的内部变量

转载 作者:太空宇宙 更新时间:2023-11-04 09:50:34 24 4
gpt4 key购买 nike

我有以下示例代码来测试 BasicRNNCell。我想得到它的内部矩阵,以便我可以使用我自己的代码计算 output_resnewstate_res 的值,以确保我可以重现 的值>output_res, newstate_res.

在 tensorflow 源代码中,它说 output = new_state = act(W * input + U * state + B)。有人知道我怎样才能得到 WU 吗? (我尝试访问 cell._kernel,但它不可用。)

$ cat ./main.py
#!/usr/bin/env python
# vim: set noexpandtab tabstop=2 shiftwidth=2 softtabstop=-1 fileencoding=utf-8:

import tensorflow as tf
import numpy as np

batch_size = 4
vector_size = 3

inputs = tf.placeholder(
tf.float32
, [batch_size, vector_size]
)

num_units = 2
state = tf.zeros([batch_size, num_units], tf.float32)

cell = tf.contrib.rnn.BasicRNNCell(num_units=num_units)
output, newstate = cell(inputs = inputs, state = state)

X = np.zeros([batch_size, vector_size])
#X = np.ones([batch_size, vector_size])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

output_res, newstate_res = sess.run([output, newstate], feed_dict = {inputs: X})
print(output_res)
print(newstate_res)
sess.close()

$ ./main.py
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]

最佳答案

简短回答:您知道您在寻找cell._kernel。下面是一些使用 variables 属性获取内核(和偏差)的代码,该属性在大多数 TensorFlow RNN 中:

import tensorflow as tf
import numpy as np

batch_size = 4
vector_size = 3
inputs = tf.placeholder(tf.float32, [batch_size, vector_size])

num_units = 2
state = tf.zeros([batch_size, num_units], tf.float32)

cell = tf.contrib.rnn.BasicRNNCell(num_units=num_units)
output, newstate = cell(inputs=inputs, state=state)

print("Output of cell.variables is a list of Tensors:")
print(cell.variables)
kernel, bias = cell.variables

X = np.zeros([batch_size, vector_size])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

output_, newstate_, k_, b_ = sess.run(
[output, newstate, kernel, bias], feed_dict = {inputs: X})
print("Output:")
print(output_)
print("New State == Output:")
print(newstate_)
print("\nKernel:")
print(k_)
print("\nBias:")
print(b_)

输出

Output of cell.variables is a list of Tensors:
[<tf.Variable 'basic_rnn_cell/kernel:0' shape=(5, 2) dtype=float32_ref>,
<tf.Variable 'basic_rnn_cell/bias:0' shape=(2,) dtype=float32_ref>]
Output:
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]
New State == Output:
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]

Kernel:
[[ 0.41417515 -0.64997244]
[-0.40868729 -0.90995187]
[ 0.62134564 -0.88962835]
[-0.35878009 -0.25680023]
[ 0.35606658 -0.83596271]]

Bias:
[ 0. 0.]

长答:你还问了怎么得到W和U,我复制call的实现,讨论一下W和U在哪。

def call(self, inputs, state):
"""Most basic RNN: output = new_state = act(W * input + U * state + B)."""

gate_inputs = math_ops.matmul(
array_ops.concat([inputs, state], 1), self._kernel)
gate_inputs = nn_ops.bias_add(gate_inputs, self._bias)
output = self._activation(gate_inputs)
return output, output

看起来不像有一个 W 和一个 U,但它们确实存在。本质上,内核的第一个 vector_size 行是 W,内核的下一个 num_units 行是 U。也许在 LaTeX 中查看逐元素数学会有所帮助:

w and u inside k

我使用 m 作为通用批量索引,v 作为 vector_sizen 作为 num_unitsbbatch_size。还有 [ ; ] 表示串联。由于 TensorFlow 是批量处理的,因此实现通常使用右乘矩阵。

因为这是一个非常基本的 RNN,output == new_state。下一次迭代的“历史”只是当前迭代的输出。

关于python - BasicRNNCell 中的内部变量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47965256/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com