- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
如果它是 excel,我本可以使用索引匹配。我有一个数据框 df = pd.DataFrame(np.random.randn(200,5),columns= ['苹果','梨','橙子','芒果','香蕉'])
apple pear orange mango banana
0 -1.162567 0.488261 1.716845 -1.375144 -0.510948
1 -0.344498 -1.096802 -0.544039 -0.106573 -0.316679
2 0.097983 -0.313277 0.572100 -0.176696 -0.574828
3 -1.300936 -2.749289 -0.065648 1.072607 2.099388
4 0.956781 -1.036766 0.794087 1.962683 -2.087505
5 -2.619787 1.024262 1.025925 -0.763013 0.942017
...
我还有一个包含 200 个项目的列表:['apple','orange','mango',mango','pear'...]如何遍历 df 中的行并根据列表中的列名获取值:期望的输出:
values
0 -1.162567
1 -0.544039
2 -0.176696
3 1.072607
4 -1.036766
...
最佳答案
使用lookup
,但需要与 df 长度相同的列表,并且 list
的所有值都必须在列名中:
L = ['apple','orange','mango','mango','pear', 'banana']
df['values'] = df.lookup(df.index, L)
print (df)
apple pear orange mango banana values
0 -1.162567 0.488261 1.716845 -1.375144 -0.510948 -1.162567
1 -0.344498 -1.096802 -0.544039 -0.106573 -0.316679 -0.544039
2 0.097983 -0.313277 0.572100 -0.176696 -0.574828 -0.176696
3 -1.300936 -2.749289 -0.065648 1.072607 2.099388 1.072607
4 0.956781 -1.036766 0.794087 1.962683 -2.087505 -1.036766
5 -2.619787 1.024262 1.025925 -0.763013 0.942017 0.942017
关于python - 等效于 Python pandas 中的 Excel 索引匹配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51285136/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!