- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个包含 36 个特征的数据集,我将所有这些特征用于 Fold 交叉验证中的逻辑回归算法。我的 K 值为 10。有什么方法可以在 CV 的第 10 次折叠结束时找到专用于我的所有 36 个特征的权重?这是我的代码:
labels = df.columns[2:36]
X = df[labels]
y = df['target']
# use train/test split with different random_state values
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)
logreg = LogisticRegression()
classifier_pre = cross_val_score(logreg, X, y, cv=20, scoring='precision')
print("Precision:" ,classifier_pre.mean())
最佳答案
首先,python中的索引是从0开始的,所以写成labels = df.columns[2:36]
假设您的目标列有索引 1,用人类语言表示,它是从左边开始的第二个(遍历值,第 36 列将作为第 0 列返回)。如果您的目标列是从数据框左侧开始的第一列,您应该写 labels = df.columns[1:35]
一些函数,包括逻辑回归,已经在 sklearn.linear_model 中实现了 CV 模式。我劝你看看here您可以在其中了解如何调整和使用它。
你可以尝试类似的东西:
from sklearn.linear_model import LogisticRegressionCV
labels = df.columns[1:35] #if indeed your very first column is your target !!
logistic = LogisticRegressionCV(Cs=4, fit_intercept=True, cv=10, verbose =1, random_state=42)
logistic.fit(X, y)
print(logistic.coef_) #weights of each feature
print(logistic.intercept_) #value of intercept
最后一个建议:使用 train_test_split
生成的测试集是个好主意,但不要在其上训练您的模型。仅将其用于最后的评估。这意味着在这里你应该用 X_train
来适应你的算法。和 y_train
并在 X_test
上对其进行评估和 y_test
,而不是复制我写的一小段代码,其中拟合部分是在 X
上完成的和 y
,如果在 X
上评估您的模型,这将导致您对准确性的衡量过于乐观。和 y
...
关于python - 从 K-Fold CV 中寻找逻辑回归权重,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52316237/
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我们可以说 O(K + (N-K)logK)相当于O(K + N logK)对于 1 < = K <= N ? 最佳答案 简短的回答是它们不等价,这取决于k 的值。如果k等于N,那么第一个复杂度是O(
我有以下解决方案,但我从其他评论者那里听说它是 O(N * K * K),而不是 O(N * K)其中 N 是 K 列表的(最大)长度,K 是列表的数量。例如,给定列表 [1, 2, 3] 和 [4,
我试图理解这些语法结构之间的语义差异。 if ((i% k) == (l % k) == 0) 和 if ((i % k) == 0 && (l % k) == 0) 最佳答案 您的特定表达式((i
我有时会使用一维数组: A = np.array([1, 2, 3, 4]) 或 2D 阵列(使用 scipy.io.wavfile 读取单声道或立体声信号): A = np.array([[1, 2
在文档聚类过程中,作为数据预处理步骤,我首先应用奇异向量分解得到U、S和Vt 然后通过选择适当数量的特征值,我截断了 Vt,这让我从阅读的内容中得到了很好的文档-文档相关性 here .现在我正在对矩
我问的是关于 Top K 算法的问题。我认为 O(n + k log n) 应该更快,因为……例如,如果您尝试插入 k = 300 和 n = 100000000,我们可以看到 O(n + k log
这个问题与另一个问题R:sample()密切相关。 。我想在 R 中找到一种方法来列出 k 个数字的所有排列,总和为 k,其中每个数字都是从 0:k 中选择的。如果k=7,我可以从0,1,...,7中
我目前正在评估基于隐式反馈的推荐系统。我对排名任务的评估指标有点困惑。具体来说,我希望通过精确度和召回率来进行评估。 Precision@k has the advantage of not requ
我在 Python 中工作,需要找到一种算法来生成所有可能的 n 维 k,k,...,k 数组,每个数组都沿轴有一行 1。因此,该函数接受两个数字 - n 和 k,并且应该返回一个数组列表,其中包含沿
我们有 N 对。每对包含两个数字。我们必须找到最大数 K,这样如果我们从给定的 N 对中取 J (1 2,如果我们选择三对 (1,2),我们只有两个不同的数字,即 1 和 2。 从一个开始检查每个可能
鉴于以下问题,我不能完全确定我当前的解决方案: 问题: 给定一个包含 n 元素的最大堆,它存储在数组 A 中,是否可以打印所有最大的 K 元素在 O(K*log(K)) 中? 我的回答: 是的,是的,
我明白了: val vector: RDD[(String, Array[String])] = [("a", {v1,v2,..}),("b", {u1,u2,..})] 想转换成: RDD[(St
我有 X 个正数,索引为 x_i。每个 x_i 需要进入 K 组之一(其中 K 是预先确定的)。令 S_j 为 K_j 中所有 x_i 的总和。我需要分配所有 x_i 以使所有 S_j 的方差最小化。
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 这个问题是由于错别字或无法再重现的问题引起的。虽然类似的问题可能是on-topi
我正在研究寻找原始数的算法,看到下面的语句,我不明白为什么。 while (k*k <= n) 优于 while (k <= Math.sqrt(n)) 是因为函数调用吗?该调用函数使用更多资源。 更
我想找到一种尽可能快的方法来将两个小 bool 矩阵相乘,其中小意味着 8x8、9x9 ... 16x16。这个例程会被大量使用,所以需要非常高效,所以请不要建议直截了当的解决方案应该足够快。 对于
有没有一种惯用的方法来获取 Set和 Function ,并获得 Map实时取景? (即 Map 由 Set 和 Function 组合支持,例如,如果将元素添加到 Set ,则相应的条目也存在于 M
这个问题在这里已经有了答案: Can a local variable's memory be accessed outside its scope? (20 个答案) returning addr
给定一个矩阵:- k = [1 2 3 ; 4 5 6 ; 7 8 NaN]; 如果我想用 0 替换一个数字,比如 2,我可以使用这个:k(k==2) =
我是一名优秀的程序员,十分优秀!