gpt4 book ai didi

python - for if 循环根据条件进行分类

转载 作者:太空宇宙 更新时间:2023-11-04 09:39:00 26 4
gpt4 key购买 nike

我是 python 的新手并且曾经使用 R。对于这个问题,我会使用 as.factor 并根据数字进行分类。

早些时候,我曾尝试使用 replace 和 .loc 函数,以便根据条件在新列中提供新的类别值,但它只会在我想做的事情上运行失败。

最终我创建了以下非常简单的函数:

g['Category'] = ""

for i in g['NumFloorsGroup']:
if i == '0-9' or i == '10-19':
g['Category'] = 'LowFl'
elif i == '50~':
g['Category'] = 'HighFl'
else:
g['Category'] = 'NormalFl'

但是当我运行该函数时,它只返回“LowFl”并且不更正其他部分。我觉得我错过了什么。

数据信息如下:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 596 entries, 128 to 595
Data columns (total 4 columns):
YearBuilt 596 non-null int64
NumFloorsGroup 596 non-null category
Count 596 non-null int64
Category 596 non-null object
dtypes: category(1), int64(2), object(1)

任何评论都会有帮助!

bins = [0, 10, 20, 30, 40, 50, np.inf]
labels = ['0-9', '10-19', '20-29', '30-39', '40-49', '50~']
copy = original_data.copy()
copy['NumFloorsGroup'] = pd.cut(copy['NumFloors'], bins=bins, labels=labels, include_lowest=True)

g = (copy.groupby(['YearBuilt', 'NumFloorsGroup'])['YearBuilt']
.count()
.reset_index(name="Count")
.sort_values(by='Count', ascending=False))

以及只返回LowFl的部分

g['Category'] = ""

for i in g['NumFloorsGroup']:
if i == '0-9' or i == '10-19':
g['Category'] = 'LowFl'
elif i == '50~':
g['Category'] = 'HighFl'
else:
g['Category'] = 'NormalFl'

这会将所有类别返回为 LowFl

    YearBuilt   NumFloorsGroup  Count   Category
128 1920 0-9 90956 LowFl
171 1930 0-9 76659 LowFl
144 1925 0-9 70387 LowFl
237 1950 0-9 47237 LowFl
91 1910 0-9 46384 LowFl

最佳答案

我建议更改 cut使用新的 bins 和新的标签来运行,因为最好的办法是避免 pandas 中的循环,因为如果存在一些矢量化函数,速度会很慢:

df = pd.DataFrame({'Floors':[0,1,10,19,20,25,40, 70]})

bins = [0, 10, 20, 30, 40, 50, np.inf]
labels = ['0-9', '10-19', '20-29', '30-39', '40-49', '50~']

df['NumFloorsGroup'] = pd.cut(df['Floors'],
bins=bins,
labels=labels,
include_lowest=True)

df['Category'] = pd.cut(df['Floors'],
bins=[0, 19, 50, np.inf],
labels=['LowFl','NormalFl','HighFl'],
include_lowest=True)

print (df)
Floors NumFloorsGroup Category
0 0 0-9 LowFl
1 1 0-9 LowFl
2 10 0-9 LowFl
3 19 10-19 LowFl
4 20 10-19 NormalFl
5 25 20-29 NormalFl
6 40 30-39 NormalFl
7 70 50~ HighFl

或者使用map与字典一起 fillnaNormalFl 替换不在字典中的值 (NaNs):

d = { "0-9": 'LowFl',  "10-19": 'LowFl',"50+": 'HighFl'}
df['Category'] = df['NumFloorsGroup'].map(d).fillna('NormalFl')

关于python - for if 循环根据条件进行分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52400904/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com