- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
按单个维度分组适用于 xarray DataArrays:
d = xr.DataArray([1, 2, 3], coords={'a': ['x', 'x', 'y']}, dims=['a'])
d.groupby('a').mean()) # -> DataArray (a: 2) array([1.5, 3. ])`
但是,这仅支持单个维度,因此无法按多个维度分组:
d = DataAssembly([[1, 2, 3], [4, 5, 6]],
coords={'a': ('multi_dim', ['a', 'b']), 'c': ('multi_dim', ['c', 'c']), 'b': ['x', 'y', 'z']},
dims=['multi_dim', 'b'])
d.groupby(['a', 'b']) # TypeError: `group` must be an xarray.DataArray or the name of an xarray variable or dimension
我只有一个低效的解决方案,它手动执行 for 循环:
a, b = np.unique(d['a'].values), np.unique(d['b'].values)
result = xr.DataArray(np.zeros([len(a), len(b)]), coords={'a': a, 'b': b}, dims=['a', 'b'])
for a, b in itertools.product(a, b):
cells = d.sel(a=a, b=b)
merge = cells.mean()
result.loc[{'a': a, 'b': b}] = merge
# result = DataArray (a: 2, b: 2)> array([[2., 3.], [5., 6.]])
# Coordinates:
# * a (a) <U1 'x' 'y'
# * b (b) int64 0 1
然而,对于较大的阵列来说,这非常慢。是否有更高效/更直接的解决方法?
最佳答案
我构建了一个手动解决方案。为了提高效率,我丢弃了所有 xarray 并手动重建索引和值。使用更多 xarray 的任何更改(例如使用 sel
,将单元格重新打包到 DataArray 中;另请参阅 https://github.com/pydata/xarray/issues/2452)会导致速度严重下降。
import itertools
from collections import defaultdict
import numpy as np
import xarray as xr
from xarray import DataArray
class DataAssembly(DataArray):
def multi_dim_groupby(self, groups, apply):
# align
groups = sorted(groups, key=lambda group: self.dims.index(self[group].dims[0]))
# build indices
groups = {group: np.unique(self[group]) for group in groups}
group_dims = {self[group].dims: group for group in groups}
indices = defaultdict(lambda: defaultdict(list))
result_indices = defaultdict(dict)
for group in groups:
for index, value in enumerate(self[group].values):
indices[group][value].append(index)
if value not in result_indices[group]: # if captured once, it will be "grouped away"
index = max(result_indices[group].values()) + 1 if len(result_indices[group]) > 0 else 0
result_indices[group][value] = index
coords = {coord: (dims, value) for coord, dims, value in walk_coords(self)}
def simplify(value):
return value.item() if value.size == 1 else value
def indexify(dict_indices):
return [(i,) if isinstance(i, int) else tuple(i) for i in dict_indices.values()]
# group and apply
# making this a DataArray right away and then inserting through .loc would slow things down
result = np.zeros([len(indices) for indices in result_indices.values()])
result_coords = {coord: (dims, [None] * len(result_indices[group_dims[dims]]))
for coord, (dims, value) in coords.items()}
for values in itertools.product(*groups.values()):
group_values = dict(zip(groups.keys(), values))
self_indices = {group: indices[group][value] for group, value in group_values.items()}
values_indices = indexify(self_indices)
cells = self.values[values_indices] # using DataArray would slow things down. thus we pass coords as kwargs
cells = simplify(cells)
cell_coords = {coord: (dims, value[self_indices[group_dims[dims]]])
for coord, (dims, value) in coords.items()}
cell_coords = {coord: (dims, simplify(np.unique(value))) for coord, (dims, value) in cell_coords.items()}
# ignore dims when passing to function
passed_coords = {coord: value for coord, (dims, value) in cell_coords.items()}
merge = apply(cells, **passed_coords)
result_idx = {group: result_indices[group][value] for group, value in group_values.items()}
result[indexify(result_idx)] = merge
for coord, (dims, value) in cell_coords.items():
if isinstance(value, np.ndarray): # multiple values for coord -> ignore
if coord in result_coords: # delete from result coords if not yet deleted
del result_coords[coord]
continue
assert dims == result_coords[coord][0]
coord_index = result_idx[group_dims[dims]]
result_coords[coord][1][coord_index] = value
# re-package
result = type(self)(result, coords=result_coords, dims=list(itertools.chain(*group_dims.keys())))
return result
def walk_coords(assembly):
"""
walks through coords and all levels, just like the `__repr__` function, yielding `(name, dims, values)`.
"""
coords = {}
for name, values in assembly.coords.items():
# partly borrowed from xarray.core.formatting#summarize_coord
is_index = name in assembly.dims
if is_index and values.variable.level_names:
for level in values.variable.level_names:
level_values = assembly.coords[level]
yield level, level_values.dims, level_values.values
else:
yield name, values.dims, values.values
return coords
multi_dim_groupby
方法一步完成分组和应用。传递的 apply
方法可以通过以坐标命名的参数接受组坐标(或者通过将 **_
放在函数头中来忽略坐标)。
它不是特别漂亮,也没有涵盖所有可能的情况,但至少涵盖了以下测试用例:
import DataAssembly
class TestMultiDimGroupby:
def test_unique_values(self):
d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
coords={'a': ['a', 'b', 'c', 'd'],
'b': ['x', 'y', 'z']},
dims=['a', 'b'])
g = d.multi_dim_groupby(['a', 'b'], lambda x, **_: x)
assert g.equals(d)
def test_nonunique_singledim(self):
d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
coords={'a': ['a', 'a', 'b', 'b'],
'b': ['x', 'y', 'z']},
dims=['a', 'b'])
g = d.multi_dim_groupby(['a', 'b'], lambda x, **_: x.mean())
assert g.equals(DataAssembly([[2.5, 3.5, 4.5], [8.5, 9.5, 10.5]],
coords={'a': ['a', 'b'], 'b': ['x', 'y', 'z']},
dims=['a', 'b']))
def test_nonunique_adjacentcoord(self):
d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
coords={'a': ('adim', ['a', 'a', 'b', 'b']),
'aa': ('adim', ['a', 'b', 'a', 'b']),
'b': ['x', 'y', 'z']},
dims=['adim', 'b'])
g = d.multi_dim_groupby(['a', 'b'], lambda x, **_: x.mean())
assert g.equals(DataAssembly([[2.5, 3.5, 4.5], [8.5, 9.5, 10.5]],
coords={'adim': ['a', 'b'], 'b': ['x', 'y', 'z']},
dims=['adim', 'b'])), \
"adjacent coord aa should be discarded due to non-mappability"
def test_unique_values_swappeddims(self):
d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
coords={'a': ['a', 'b', 'c', 'd'],
'b': ['x', 'y', 'z']},
dims=['a', 'b'])
g = d.multi_dim_groupby(['b', 'a'], lambda x, **_: x)
assert g.equals(d)
关于python - 按多个维度分组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52453426/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!