- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有两个数据帧,即 df1 和 df2。我想对 df2 的“New_Amount_Dollar”列执行操作。基本上在 df1 中,我有历史货币数据,我想在给定 df2 中的 Currency 和 Amount_Dollar 的情况下执行按日期计算的操作,以计算 df2 中 New_Amount_Dollar 列的值。
对于“货币”== [AUD, BWP] 我们需要将 Amount_Dollar 乘以相应日期的相应货币值。
对于其他货币,我们需要将 Amount_Dollar 除以相应日期的相应货币值(value)。
例如,在 df2 中,日期 = '01-01-2019' 的第一种货币为 AUD,因此我想计算 New_Amount_Dollar 值,这样
New_Amount_Dollar = Amount_Dollar*来自 df1 的 AUD 值,即 New_Amount_Dollar = 19298*98 = 1891204
另一个例子,在 df2 中我有第三种货币作为 Date = '03-01-2019 的 COP,所以我想计算 New_Amount_Dollar 值,这样
New_Amount_Dollar = Amount_Dollar/来自 df1 的 COP 值,即 New_Amount_Dollar = 5000/0.043 = 116279.06
import pandas as pd
data1 = {'Date':['01-01-2019', '02-01-2019', '03-01-2019',
'04-01-2019','05-01-2019'],
'AUD':[98, 98.5, 99, 99.5, 97],
'BWP':[30,31,33,32,31],
'CAD':[0.02,0.0192,0.0196,0.0196,0.0192],
'BND':[0.99,0.952,0.970,0.980,0.970],
'COP':[0.05,0.047,0.043,0.047,0.045]}
df1 = pd.DataFrame(data1)
data2 = {'Date':['01-01-2019', '02-01-2019', '03-01-2019', '04-01-2019','05-01-2019'],
'Currency':['AUD','AUD','COP','CAD','BND'],
'Amount_Dollar':[19298, 19210, 5000, 200, 2300],
'New_Amount_Dollar':[0,0,0,0,0]
}
df2 = pd.DataFrame(data2)
print (df2)
df1
Date AUD BWP CAD BND COP
0 01-01-2019 98.0 30 0.0200 0.990 0.050
1 02-01-2019 98.5 31 0.0192 0.952 0.047
2 03-01-2019 99.0 33 0.0196 0.970 0.043
3 04-01-2019 99.5 32 0.0196 0.980 0.047
4 05-01-2019 97.0 31 0.0192 0.970 0.045
df2
Date Currency Amount_Dollar New_Amount_Dollar
0 01-01-2019 AUD 19298 0
1 02-01-2019 AUD 19210 0
2 03-01-2019 COP 5000 0
3 04-01-2019 CAD 200 0
4 05-01-2019 BND 2300 0
预期结果
Date Currency Amount_Dollar New_Amount_Dollar
0 01-01-2019 AUD 19298 1891204
1 02-01-2019 AUD 19210 1892185.0
2 03-01-2019 COP 5000 116279.06
3 04-01-2019 CAD 200 10204.08
4 05-01-2019 BND 2300 2371.13
最佳答案
你想要lookup
和isin()
:
# this is to know where to multiply
# where to divide
s = df2['Currency'].isin(['AUD', 'BWP'])
# the values to multiply/divide
m = df1.set_index('Date').lookup(df2['Date'],df2['Currency'])
df2['New_Amount_Dollar'] = df2['Amount_Dollar'] * np.where(s, m, 1/m)
输出:
Date Currency Amount_Dollar New_Amount_Dollar
0 01-01-2019 AUD 19298 1891204.00
1 02-01-2019 AUD 19210 1892185.00
2 03-01-2019 COP 5000 116279.07
3 04-01-2019 CAD 200 10204.08
4 05-01-2019 BND 2300 2371.13
关于python - 使用 Pandas 对多个映射列进行按列操作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58738957/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!