gpt4 book ai didi

python - 如何修复此 Python TypeError : iteration over non-sequence?

转载 作者:太空宇宙 更新时间:2023-11-04 09:13:51 32 4
gpt4 key购买 nike

当我运行下面的整个代码时,这一行:

for f in features:

从这个函数(其中 getfeatures 返回一个字典):

def train(self,item,cat):
features=self.getfeatures(item)
# Increment the count for every feature with this category
for f in features:
self.incf(f,cat)
# Increment the count for this category
self.incc(cat)
self.con.commit()

产生这个错误:

TypeError: iteration over non-sequence              

我尝试替换这一行:for f in features: for this: for f in features.keys(): 但没有成功 ("AttributeError: 分类器实例没有属性 'keys'")。当我尝试这个时:

print getfeatures('Nobody owns the water.')

它给了我预期的结果:

{'water': 1, 'the': 1, 'nobody': 1, 'owns': 1}

如何修复此错误并在 f 字典中正确迭代?

这段代码来自(优秀的)书“Programming Collective Intelligence”。我刚从 here 复制过来的(我也买了这本书)并删除了部分代码(fisherclassifier,因为我只使用了 naivebayes 分类器)。我很难相信这个错误还没有被意识到。我可能做错了什么。

Here the entire code:

import sqlite3

#from pysqlite2 import dbapi2 as sqlite

import re
import math

def getfeatures(doc):
splitter=re.compile('\\W*')
# Split the words by non-alpha characters
words=[s.lower() for s in splitter.split(doc)
if len(s)>2 and len(s)<20]
# Return the unique set of words only
# return dict([(w,1) for w in words]).iteritems()
return dict([(w,1) for w in words])

class classifier:
def __init__(self,getfeatures,filename=None):
# Counts of feature/category combinations
self.fc={}
# Counts of documents in each category
self.cc={}
self.getfeatures=getfeatures

def setdb(self,dbfile):
self.con=sqlite.connect(dbfile)
self.con.execute('create table if not exists fc(feature,category,count)')
self.con.execute('create table if not exists cc(category,count)')


def incf(self,f,cat):
count=self.fcount(f,cat)
if count==0:
self.con.execute("insert into fc values ('%s','%s',1)"
% (f,cat))
else:
self.con.execute(
"update fc set count=%d where feature='%s' and category='%s'"
% (count+1,f,cat))

def fcount(self,f,cat):
res=self.con.execute(
'select count from fc where feature="%s" and category="%s"'
%(f,cat)).fetchone()
if res==None: return 0
else: return float(res[0])

def incc(self,cat):
count=self.catcount(cat)
if count==0:
self.con.execute("insert into cc values ('%s',1)" % (cat))
else:
self.con.execute("update cc set count=%d where category='%s'"
% (count+1,cat))

def catcount(self,cat):
res=self.con.execute('select count from cc where category="%s"'
%(cat)).fetchone()
if res==None: return 0
else: return float(res[0])

def categories(self):
cur=self.con.execute('select category from cc');
return [d[0] for d in cur]

def totalcount(self):
res=self.con.execute('select sum(count) from cc').fetchone();
if res==None: return 0
return res[0]


def train(self,item,cat):
features=self.getfeatures(item)
# Increment the count for every feature with this category
for f in features.keys():
## for f in features:
self.incf(f,cat)
# Increment the count for this category
self.incc(cat)
self.con.commit()

def fprob(self,f,cat):
if self.catcount(cat)==0: return 0

# The total number of times this feature appeared in this
# category divided by the total number of items in this category
return self.fcount(f,cat)/self.catcount(cat)

def weightedprob(self,f,cat,prf,weight=1.0,ap=0.5):
# Calculate current probability
basicprob=prf(f,cat)

# Count the number of times this feature has appeared in
# all categories
totals=sum([self.fcount(f,c) for c in self.categories()])

# Calculate the weighted average
bp=((weight*ap)+(totals*basicprob))/(weight+totals)
return bp




class naivebayes(classifier):

def __init__(self,getfeatures):
classifier.__init__(self,getfeatures)
self.thresholds={}

def docprob(self,item,cat):
features=self.getfeatures(item)

# Multiply the probabilities of all the features together
p=1
for f in features: p*=self.weightedprob(f,cat,self.fprob)
return p

def prob(self,item,cat):
catprob=self.catcount(cat)/self.totalcount()
docprob=self.docprob(item,cat)
return docprob*catprob

def setthreshold(self,cat,t):
self.thresholds[cat]=t

def getthreshold(self,cat):
if cat not in self.thresholds: return 1.0
return self.thresholds[cat]

def classify(self,item,default=None):
probs={}
# Find the category with the highest probability
max=0.0
for cat in self.categories():
probs[cat]=self.prob(item,cat)
if probs[cat]>max:
max=probs[cat]
best=cat

# Make sure the probability exceeds threshold*next best
for cat in probs:
if cat==best: continue
if probs[cat]*self.getthreshold(best)>probs[best]: return default
return best


def sampletrain(cl):
cl.train('Nobody owns the water.','good')
cl.train('the quick rabbit jumps fences','good')
cl.train('buy pharmaceuticals now','bad')
cl.train('make quick money at the online casino','bad')
cl.train('the quick brown fox jumps','good')


nb = naivebayes(classifier)

sampletrain(nb)

#print ('\nbuy is classified as %s'%nb.classify('buy'))
#print ('\nquick is classified as %s'%nb.classify('quick'))

##print getfeatures('Nobody owns the water.')

最佳答案

看起来您正在使用 classifier 初始化 naivebayes 的实例:

nb = naivebayes(classifier) 

您可能打算改为这样做:

nb = naivebayes(getfeatures)

train 方法的 for 循环中,您不是从 getfeatures 获取字典,而是重复实例化 分类器

关于python - 如何修复此 Python TypeError : iteration over non-sequence?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11767761/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com