gpt4 book ai didi

python - 计算用于卡方检验的先前机会图

转载 作者:太空宇宙 更新时间:2023-11-04 09:06:34 26 4
gpt4 key购买 nike

所以,我正在使用一个脚本来计算一个人在行中指定日期之前的日期出现在列表中的次数,并且 1 出现在第 6 列中,并且还计算了一个人出现的次数人员(第 7 列)出现在列表中的日期早于行中指定的日期(注意它们按时间顺序排序。)(使用基于零的列引用)

示例数据集

02/01/2005,Data,Class xpv,4,11yo+,4,1,George Smith
02/01/2005,Data,Class xpv,4,11yo+,4,2,Ted James
02/01/2005,Data,Class xpv,4,11yo+,4,3,Emma Lilly
02/01/2005,Data,Class xpv,4,11yo+,4,5,George Smith
02/01/2005,Data,Class xpv,4,11yo+,6,4,Tom Phillips
03/01/2005,Data,Class tn2,4,10yo+,6,2,Tom Phillips
03/01/2005,Data,Class tn2,4,10yo+,6,5,George Smith
03/01/2005,Data,Class tn2,4,10yo+,6,3,Tom Phillips
03/01/2005,Data,Class tn2,4,10yo+,6,1,Emma Lilly
03/01/2005,Data,Class tn2,4,10yo+,6,6,George Smith
04/01/2005,Data,Class tn2,4,10yo+,6,6,Ted James
04/01/2005,Data,Class tn2,4,10yo+,6,3,Tom Phillips
04/01/2005,Data,Class tn2,4,10yo+,6,2,George Smith
04/01/2005,Data,Class tn2,4,10yo+,6,4,George Smith
04/01/2005,Data,Class tn2,4,10yo+,6,1,George Smith
04/01/2005,Data,Class tn2,4,10yo+,6,5,Tom Phillips
05/01/2005,Data,Class 22zn,2,10yo+,5,3,Emma Lilly
05/01/2005,Data,Class 22zn,2,10yo+,5,1,Ted James
05/01/2005,Data,Class 22zn,2,10yo+,5,2,George Smith
05/01/2005,Data,Class 22zn,2,10yo+,5,4,Emma Lilly
05/01/2005,Data,Class 22zn,2,10yo+,5,5,Tom Phillips

我正在使用的代码

import csv
import datetime
import copy
from collections import defaultdict

with open(r"C:\Temp\test.csv") as i, open(r"C:\Temp\resuls.csv", "wb") as o:
rdr = csv.reader(i)
wrt = csv.writer(o)

data, currdate = defaultdict(lambda:[0, 0, 0, 0]), None
for line in rdr:
date, name = datetime.datetime.strptime(line[0], '%d/%m/%Y'), line[7]

if date != currdate or not currdate:
for v in data.itervalues(): v[:2] = v[2:]
currdate = date

wrt.writerow(line + data[name][:2])

data[name][3] += 1
if line[6] == "1": data[name][2] += 1

返回:

02/01/2005,Data,Class xpv,4,11yo+,4,1,George Smith,0,0
02/01/2005,Data,Class xpv,4,11yo+,4,2,Ted James,0,0
02/01/2005,Data,Class xpv,4,11yo+,4,3,Emma Lilly,0,0
02/01/2005,Data,Class xpv,4,11yo+,4,5,George Smith,0,0
02/01/2005,Data,Class xpv,4,11yo+,6,4,Tom Phillips,0,0
03/01/2005,Data,Class tn2,4,10yo+,6,2,Tom Phillips,0,1
03/01/2005,Data,Class tn2,4,10yo+,6,5,George Smith,1,2
03/01/2005,Data,Class tn2,4,10yo+,6,3,Tom Phillips,0,1
03/01/2005,Data,Class tn2,4,10yo+,6,1,Emma Lilly,0,1
03/01/2005,Data,Class tn2,4,10yo+,6,6,George Smith,1,2
04/01/2005,Data,Class tn2,4,10yo+,6,6,Ted James,0,1
04/01/2005,Data,Class tn2,4,10yo+,6,3,Tom Phillips,0,3
04/01/2005,Data,Class tn2,4,10yo+,6,2,George Smith,1,4
04/01/2005,Data,Class tn2,4,10yo+,6,4,George Smith,1,4
04/01/2005,Data,Class tn2,4,10yo+,6,1,George Smith,1,4
04/01/2005,Data,Class tn2,4,10yo+,6,5,Tom Phillips,0,3
05/01/2005,Data,Class 22zn,2,10yo+,5,3,Emma Lilly,1,2
05/01/2005,Data,Class 22zn,2,10yo+,5,1,Ted James,0,2
05/01/2005,Data,Class 22zn,2,10yo+,5,2,George Smith,2,7
05/01/2005,Data,Class 22zn,2,10yo+,5,4,Emma Lilly,1,2
05/01/2005,Data,Class 22zn,2,10yo+,5,5,Tom Phillips,0,5

最终我会想要对生成的百分比数据执行卡方运算。但是现在我想要实现的是能够计算和总结一个唯一数据类(第 2 列)中任何人的分数机会,并将其作为新列附加到 csv。我不确定是否可以编辑我使用过的代码以将其作为一个整体代码来实现。任何关于如何最好地做到这一点的建设性建议或意见将不胜感激。

我想要的输出如下:

02/01/2005,Data,Class xpv,4,11yo+,5,1,George Smith,0,0,0
02/01/2005,Data,Class xpv,4,11yo+,5,2,Ted James,0,0,0
02/01/2005,Data,Class xpv,4,11yo+,5,3,Emma Lilly,0,0,0
02/01/2005,Data,Class xpv,4,11yo+,5,5,George Smith,0,0,0
02/01/2005,Data,Class xpv,4,11yo+,5,4,Tom Phillips,0,0,0
03/01/2005,Data,Class tn2,4,10yo+,5,2,Tom Phillips,0,1,0.2, He gets 0.2 because there was a 1 in 5 chance for previous occurrences on dates prior to today. 1/5
03/01/2005,Data,Class tn2,4,10yo+,5,5,George Smith,1,2,0.4, He gets 0.4 because there was a 2 in 5 chance for previous occurrences on dates prior to today. 2/5
03/01/2005,Data,Class tn2,4,10yo+,5,3,Tom Phillips,0,1,0.2
03/01/2005,Data,Class tn2,4,10yo+,5,1,Emma Lilly,0,1,0.2
03/01/2005,Data,Class tn2,4,10yo+,5,6,George Smith,1,2,0.4
04/01/2005,Data,Class tn2,4,10yo+,6,6,Ted James,0,1,0.2
04/01/2005,Data,Class tn2,4,10yo+,6,3,Tom Phillips,0,3,0.6
04/01/2005,Data,Class tn2,4,10yo+,6,2,George Smith,1,4,0.8
04/01/2005,Data,Class tn2,4,10yo+,6,4,George Smith,1,4,0.8
04/01/2005,Data,Class tn2,4,10yo+,6,1,George Smith,1,4,0.8
04/01/2005,Data,Class tn2,4,10yo+,6,5,Tom Phillips,0,3,0.4
05/01/2005,Data,Class 22zn,2,10yo+,5,3,Emma Lilly,1,2,0.4
05/01/2005,Data,Class 22zn,2,10yo+,5,1,Ted James,0,2,0.366666667
05/01/2005,Data,Class 22zn,2,10yo+,5,2,George Smith,2,7,1.3
05/01/2005,Data,Class 22zn,2,10yo+,5,4,Emma Lilly,1,2,0.4
05/01/2005,Data,Class 22zn,2,10yo+,5,5,Tom Phillips,0,5,0.733333333

最佳答案

这不应该是您问题的完整答案(因为您尝试做的事情有点模棱两可),而只是向您展示如何 pandas自然适合这种计算;您还可以按名称而不是索引调用列。

假设您有一个像这样的 test.csv 文件:

date,x0,cls,x1,x2,x3,tag,name
02/01/2005,Data,Class xpv,4,11yo+,4,1,George Smith
02/01/2005,Data,Class xpv,4,11yo+,4,2,Ted James
02/01/2005,Data,Class xpv,4,11yo+,4,3,Emma Lilly
02/01/2005,Data,Class xpv,4,11yo+,4,5,George Smith
...

我为每一列分配了名称。您可以通过

将此文件读入 pandas 数据框
import pandas as pd
df = pd.DataFrame.from_csv( 'test.csv', index_col=None )

df 看起来像这样:

          date    x0         cls  x1     x2  x3  tag          name
0 02/01/2005 Data Class xpv 4 11yo+ 4 1 George Smith
1 02/01/2005 Data Class xpv 4 11yo+ 4 2 Ted James
2 02/01/2005 Data Class xpv 4 11yo+ 4 3 Emma Lilly
3 02/01/2005 Data Class xpv 4 11yo+ 4 5 George Smith
...

我删除了你不用的列(这只是为了演示,你不必删除这些列)

df.drop( labels=['x0', 'x1', 'x2', 'x3'], axis=1, inplace=True )

现在 df 如下所示:

          date         cls  tag          name
0 02/01/2005 Class xpv 1 George Smith
1 02/01/2005 Class xpv 2 Ted James
2 02/01/2005 Class xpv 3 Emma Lilly
3 02/01/2005 Class xpv 5 George Smith
...

假设您要查找每个人在每天之前的日期出现的累计次数:

pv = df.pivot_table( cols='name',
rows='date',
values='tag',
aggfunc=len ).shift( 1 ).fillna( 0 ).cumsum( )

api 文档(请参阅 here)详细描述了每个方法的作用。现在你有了数据透视表 pv 看起来像这样

date        Emma Lilly  George Smith  Ted James  Tom Phillips
02/01/2005 0 0 0 0
03/01/2005 1 2 1 1
04/01/2005 2 4 1 3
05/01/2005 2 7 2 5

或者可以使用groupby:

df.groupby(['date', 'name'])['name'].aggregate(len).unstack( ).shift( 1 ).fillna( 0 ).cumsum( )

要进行相同的计算,但只针对 tag == 1,您可以这样做

idx = df.tag == 1
pv1 = df[ idx ].pivot_table( cols='name',
rows='date',
values='tag',
aggfunc=len ).shift( 1 ).fillna( 0 ).cumsum( )

或使用groupby语法:

df[ df.tag == 1 ].groupby(['date', 'name'])['name'].aggregate(len).unstack( ).shift( 1 ).fillna( 0 ).cumsum( )

这将是:

date        Emma Lilly  George Smith  Ted James
02/01/2005 0 0 0
03/01/2005 0 1 0
04/01/2005 1 1 0
05/01/2005 1 2 0

为了填充这两个新列,我们编写了一个辅助函数以在缺少值时回退到 0:

def lookup( pivot_table, col, idx, fall_back=0 ):
try:
return pivot_table[ col ][ idx ]
except KeyError:
return fall_back

df[ 'cnt1' ] = [ lookup( pv1, row[ 'name' ], row[ 'date' ] ) for idx, row in df.iterrows( ) ]
df[ 'cnt' ] = [ lookup( pv, row[ 'name' ], row[ 'date' ] ) for idx, row in df.iterrows( ) ]

我们得到:

          date         cls  tag          name  cnt1  cnt
0 02/01/2005 Class xpv 1 George Smith 0 0
1 02/01/2005 Class xpv 2 Ted James 0 0
2 02/01/2005 Class xpv 3 Emma Lilly 0 0
3 02/01/2005 Class xpv 5 George Smith 0 0
4 02/01/2005 Class tn2 4 Tom Phillips 0 0
5 03/01/2005 Class tn2 2 Tom Phillips 0 1
6 03/01/2005 Class tn2 5 George Smith 1 2
7 03/01/2005 Class tn2 3 Tom Phillips 0 1
8 03/01/2005 Class tn2 1 Emma Lilly 0 1
9 03/01/2005 Class tn2 6 George Smith 1 2
10 04/01/2005 Class tn2 6 Ted James 0 1
11 04/01/2005 Class tn2 3 Tom Phillips 0 3
12 04/01/2005 Class tn2 2 George Smith 1 4
13 04/01/2005 Class tn2 4 George Smith 1 4
14 04/01/2005 Class tn2 1 George Smith 1 4
15 04/01/2005 Class tn2 5 Tom Phillips 0 3
16 05/01/2005 Class 22zn 3 Emma Lilly 1 2
17 05/01/2005 Class 22zn 1 Ted James 0 2
18 05/01/2005 Class 22zn 2 George Smith 2 7
19 05/01/2005 Class 22zn 4 Emma Lilly 1 2
20 05/01/2005 Class 22zn 5 Tom Phillips 0 5

如果我知道你是如何计算最后一列的,我可以继续。例如,为什么“Tom Phillips”在第 6 行得到 0.2?!

编辑:好的,让我们继续。我们需要找出每个人在每个日期出现的次数;那是另一个数据透视表:

appr = df.pivot_table( cols='name',
rows='date',
values='tag',
aggfunc=len ).fillna( 0 )

df.groupby( ['date', 'name'] )['name'].aggregate(len).unstack( ).fillna( 0 )

输出:

date        Emma Lilly  George Smith  Ted James  Tom Phillips
02/01/2005 1 2 1 1
03/01/2005 1 2 0 2
04/01/2005 0 3 1 2
05/01/2005 2 1 1 1

以及每个日期有多少人出现:

total_appr = appr.sum( axis=1 )

输出:

date
02/01/2005 5
03/01/2005 5
04/01/2005 6
05/01/2005 5

要计算累积分数,您只需将每一行除以总数,然后移动一个(因为我们查找以前的日期)并计算累积总和:

frac = appr.apply( lambda x: x / total_appr ).shift( 1 ).fillna( 0 ).cumsum( )
df[ 'frac' ] = [ frac[ row[ 'name' ] ][ row[ 'date' ] ] for idx, row in df.iterrows( ) ]

现在 df 如下所示:

          date         cls  tag          name  cnt1  cnt      frac
0 02/01/2005 Class xpv 1 George Smith 0 0 0.000000
1 02/01/2005 Class xpv 2 Ted James 0 0 0.000000
2 02/01/2005 Class xpv 3 Emma Lilly 0 0 0.000000
3 02/01/2005 Class xpv 5 George Smith 0 0 0.000000
4 02/01/2005 Class tn2 4 Tom Phillips 0 0 0.000000
5 03/01/2005 Class tn2 2 Tom Phillips 0 1 0.200000
6 03/01/2005 Class tn2 5 George Smith 1 2 0.400000
7 03/01/2005 Class tn2 3 Tom Phillips 0 1 0.200000
8 03/01/2005 Class tn2 1 Emma Lilly 0 1 0.200000
9 03/01/2005 Class tn2 6 George Smith 1 2 0.400000
10 04/01/2005 Class tn2 6 Ted James 0 1 0.200000
11 04/01/2005 Class tn2 3 Tom Phillips 0 3 0.600000
12 04/01/2005 Class tn2 2 George Smith 1 4 0.800000
13 04/01/2005 Class tn2 4 George Smith 1 4 0.800000
14 04/01/2005 Class tn2 1 George Smith 1 4 0.800000
15 04/01/2005 Class tn2 5 Tom Phillips 0 3 0.600000
16 05/01/2005 Class 22zn 3 Emma Lilly 1 2 0.400000
17 05/01/2005 Class 22zn 1 Ted James 0 2 0.366667
18 05/01/2005 Class 22zn 2 George Smith 2 7 1.300000
19 05/01/2005 Class 22zn 4 Emma Lilly 1 2 0.400000
20 05/01/2005 Class 22zn 5 Tom Phillips 0 5 0.933333

在最后一列的两行中,我的数字与您的数字不同。所以要么是我算错了,要么是你算错了这两个数字。

关于python - 计算用于卡方检验的先前机会图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20135363/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com