- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想同步两个非常长的数据帧,在这个用例中性能是关键。这两个数据帧使用日期时间或时间戳按时间顺序索引(应该尽可能快地利用这一点)。
本例中提供了一种同步方式:
import pandas as pd
df1=pd.DataFrame({'A':[1,2,3,4,5,6], 'B':[1,5,3,4,5,7]}, index=pd.date_range('20140101 101501', freq='u', periods=6))
df2=pd.DataFrame({'D':[10,2,30,4,5,10], 'F':[1,5,3,4,5,70]}, index=pd.date_range('20140101 101501.000003', freq='u', periods=6))
# synch data frames
df3=df1.merge(df2, how='outer', right_index=True, left_index=True).fillna(method='ffill')
我的问题是这是否是最有效的方法?如果有更快的方法来解决此任务,我准备探索其他解决方案(例如使用 numpy 或 cython)。
谢谢
注意:时间戳通常不是等距的(如上例所示),该方法在这种情况下也应该有效
阅读答案后发表评论
我认为有很多用例既没有对齐也没有合并或加入帮助。关键是不要使用与数据库相关的语义来进行对齐(我认为这对于时间序列来说并不那么相关)。对我来说,对齐意味着将系列 A 映射到 B 并有一种方法来处理缺失值(通常是采样和保持方法),对齐和连接会导致不需要的效果,例如由于连接而重复几个时间戳。我仍然没有完美的解决方案,但 np.searchsorted 似乎可以提供帮助(这比使用多次调用 join/align 来做我需要的要快得多)。到目前为止,我找不到 pandas 方法来执行此操作。
我如何将 A 映射到 B 以便 B 使结果具有 A 和 B 的所有时间戳但没有重复(除了那些已经在 A 和 B 中的时间戳)?
另一个典型的用例是采样和保持同步,它可以通过如下有效的方式解决(将 A 与 B 同步,即为 A 中的每个时间戳取 B 中的相应值:
idx=np.searchsorted(B.index.values, A.index.values, side='right')-1
df=A.copy()
for i in B:
df[i]=B[i].ix[idx].values
结果 df 包含 A 的相同索引和 B 中的同步值。
有没有一种有效的方法可以直接在 pandas 中做这些事情?
最佳答案
如果需要同步,使用align
,文档是here .否则合并是一个不错的选择。
In [18]: N=100000
In [19]: df1=pd.DataFrame({'A':[1,2,3,4,5,6]*N, 'B':[1,5,3,4,5,7]*N}, index=pd.date_range('20140101 101501', freq='u', periods=6*N))
In [20]: df2=pd.DataFrame({'D':[10,2,30,4,5,10]*N, 'F':[1,5,3,4,5,70]*N}, index=pd.date_range('20140101 101501.000003', freq='u', periods=6*N))
In [21]: %timeit df1.merge(df2, how='outer', right_index=True, left_index=True).fillna(method='ffill')
10 loops, best of 3: 69.3 ms per loop
In [22]: %timeit df1.align(df2)
10 loops, best of 3: 36.5 ms per loop
In [24]: pd.set_option('max_rows',10)
In [25]: x, y = df1.align(df2)
In [26]: x
Out[26]:
A B D F
2014-01-01 10:15:01 1 1 NaN NaN
2014-01-01 10:15:01.000001 2 5 NaN NaN
2014-01-01 10:15:01.000002 3 3 NaN NaN
2014-01-01 10:15:01.000003 4 4 NaN NaN
2014-01-01 10:15:01.000004 5 5 NaN NaN
... .. .. .. ..
2014-01-01 10:15:01.599998 5 5 NaN NaN
2014-01-01 10:15:01.599999 6 7 NaN NaN
2014-01-01 10:15:01.600000 NaN NaN NaN NaN
2014-01-01 10:15:01.600001 NaN NaN NaN NaN
2014-01-01 10:15:01.600002 NaN NaN NaN NaN
[600003 rows x 4 columns]
In [27]: y
Out[27]:
A B D F
2014-01-01 10:15:01 NaN NaN NaN NaN
2014-01-01 10:15:01.000001 NaN NaN NaN NaN
2014-01-01 10:15:01.000002 NaN NaN NaN NaN
2014-01-01 10:15:01.000003 NaN NaN 10 1
2014-01-01 10:15:01.000004 NaN NaN 2 5
... .. .. .. ..
2014-01-01 10:15:01.599998 NaN NaN 2 5
2014-01-01 10:15:01.599999 NaN NaN 30 3
2014-01-01 10:15:01.600000 NaN NaN 4 4
2014-01-01 10:15:01.600001 NaN NaN 5 5
2014-01-01 10:15:01.600002 NaN NaN 10 70
[600003 rows x 4 columns]
关于python - 在 Pandas 中同步两个大数据帧的最有效方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25228168/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!