- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
使用 LeaveOneOut
的 sklearn.cross_validation
中可能存在错误。x_test
和 y_test
没有在 LeaveOneOut
中使用。相反,验证是使用 x_train
和 y_train
完成的。
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import LeaveOneOut, cross_val_predict
x = np.array([[1,2],[3,4],[5,6],[7,8],[9,10]])
y = np.array([12,13,19,18,15])
clf = LinearRegression().fit(x,y)
cv = LeaveOneOut(len(y))
for train, test in cv:
x_train, y_train = x[train], y[train]
x_test, y_test = x[test], y[test]
y_pred_USING_x_test = clf.predict(x_test)
y_pred_USING_x_train = clf.predict(x_train)
print 'y_pred_USING_x_test: ', y_pred_USING_x_test, 'y_pred_USING_x_train: ', y_pred_USING_x_train
y_pred_USING_x_test: [ 13.2] y_pred_USING_x_train: [ 14.3 15.4 16.5 17.6]
y_pred_USING_x_test: [ 14.3] y_pred_USING_x_train: [ 13.2 15.4 16.5 17.6]
y_pred_USING_x_test: [ 15.4] y_pred_USING_x_train: [ 13.2 14.3 16.5 17.6]
y_pred_USING_x_test: [ 16.5] y_pred_USING_x_train: [ 13.2 14.3 15.4 17.6]
y_pred_USING_x_test: [ 17.6] y_pred_USING_x_train: [ 13.2 14.3 15.4 16.5]
y_pred_USING_x_test
在每个 for 循环中给出一个值,这没有任何意义!
y_pred_USING_x_train
是使用 LeaveOneOut
寻找的。
以下代码的结果完全无关紧要!
bug = cross_val_predict(clf, x, y, cv=cv)
print 'bug: ', bug
bug: [ 15. 14.85714286 14.5 15.85714286 21.5 ]
欢迎任何辩护。
最佳答案
根据 LeaveOneOut
Each sample is used once as a test set (singleton)
这意味着 x_test
将是一个包含一个元素的数组,而 clf.predict(x_test)
将返回一个包含一个(预测)元素的数组。这在您的输出中可以看到。
x_train
将是没有为 x_test
选择的一个元素的训练集。这可以通过在 for 循环中添加以下行来确认
for train, test in cv:
x_train, y_train = x[train], y[train]
x_test, y_test = x[test], y[test]
if len(x_test)!=1 or ( len(x_train)+1!=len(x) ): # Confirmation
raise Exception
y_pred_USING_x_test = clf.predict(x_test)
y_pred_USING_x_train = clf.predict(x_train)
print 'predicting for',x_test,'and expecting',y_test, 'and got', y_pred_USING_x_test
print 'predicting for',x_train,'and expecting',y_train, 'and got', y_pred_USING_x_train
print
print
注意 这不是正确的验证,因为您是在同一数据上训练和测试您的模型。您应该在 for 循环的迭代中创建新的 LinearRegression
对象,并使用 x_train
、y_train
对其进行训练。使用它来预测 x_test
然后比较 y_test
和 y_pred_USING_x_test
x = np.array([[1,2],[3,4],[5,6],[7,8],[9,10]])
y = np.array([12,13,19,18,15])
cv = LeaveOneOut(len(y))
for train, test in cv:
x_train, y_train = x[train], y[train]
x_test, y_test = x[test], y[test]
if len(x_test)!=1 or ( len(x_train)+1!=len(x) ):
raise Exception
clf = LinearRegression()
clf.fit(x_train, y_train)
y_pred_USING_x_test = clf.predict(x_test)
print 'predicting for',x_test,'and expecting',y_test, 'and got', y_pred_USING_x_test
关于python - sklearn.cross_validation 中的错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33655121/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!