- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我一直在根据这个答案 ( Reading csv to array, performing linear regression on array and writing to csv in Python depending on gradient ) 编写代码,以找出哪些日子在早上表现出风速增加。
这是我的数据样本
hd,Station Number,Year Month Day Hours Minutes in YYYY,MM,DD,HH24,MI format in Local time,Year Month Day Hours Minutes in YYYY,MM,DD,HH24,MI format in Local standard time,Year Month Day Hours Minutes in YYYY,MM,DD,HH24,MI format in Universal coordinated time,Precipitation since last (AWS) observation in mm,Quality of precipitation since last (AWS) observation value,Air Temperature in degrees Celsius,Quality of air temperature,Air temperature (1-minute maximum) in degrees Celsius,Quality of air temperature (1-minute maximum),Air temperature (1-minute minimum) in degrees Celsius,Quality of air temperature (1-minute minimum),Wet bulb temperature in degrees Celsius,Quality of Wet bulb temperature,Wet bulb temperature (1 minute maximum) in degrees Celsius,Quality of wet bulb temperature (1 minute maximum),Wet bulb temperature (1 minute minimum) in degrees Celsius,Quality of wet bulb temperature (1 minute minimum),Dew point temperature in degrees Celsius,Quality of dew point temperature,Dew point temperature (1-minute maximum) in degrees Celsius,Quality of Dew point Temperature (1-minute maximum),Dew point temperature (1 minute minimum) in degrees Celsius,Quality of Dew point Temperature (1 minute minimum),Relative humidity in percentage %,Quality of relative humidity,Relative humidity (1 minute maximum) in percentage %,Quality of relative humidity (1 minute maximum),Relative humidity (1 minute minimum) in percentage %,Quality of Relative humidity (1 minute minimum),Wind (1 minute) speed in km/h,Wind (1 minute) speed quality,Minimum wind speed (over 1 minute) in km/h,Minimum wind speed (over 1 minute) quality,Wind (1 minute) direction in degrees true,Wind (1 minute) direction quality,Standard deviation of wind (1 minute),Standard deviation of wind (1 minute) direction quality,Maximum wind gust (over 1 minute) in km/h,Maximum wind gust (over 1 minute) quality,Visibility (automatic - one minute data) in km,Quality of visibility (automatic - one minute data),Mean sea level pressure in hPa,Quality of mean sea level pressure,Station level pressure in hPa,Quality of station level pressure,QNH pressure in hPa,Quality of QNH pressure,#
hd, 40842,2000,03,20,10,50,2000,03,20,10,50,2000,03,20,00,50, ,N, 25.7,N, 25.7,N, 25.6,N, 21.5,N, 21.5,N, 21.4,N, 19.2,N, 19.2,N, 19.0,N, 67,N, 68,N, 66,N, 13,N, 9,N,100,N, 4,N, 15,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,51,2000,03,20,10,51,2000,03,20,00,51, 0.0,N, 25.6,N, 25.8,N, 25.6,N, 21.5,N, 21.6,N, 21.5,N, 19.2,N, 19.4,N, 19.2,N, 68,N, 68,N, 66,N, 11,N, 9,N,107,N, 11,N, 13,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,52,2000,03,20,10,52,2000,03,20,00,52, 0.0,N, 25.8,N, 25.8,N, 25.6,N, 21.7,N, 21.7,N, 21.5,N, 19.5,N, 19.5,N, 19.2,N, 68,N, 69,N, 66,N, 11,N, 9,N, 83,N, 13,N, 13,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,53,2000,03,20,10,53,2000,03,20,00,53, 0.0,N, 25.8,N, 25.9,N, 25.8,N, 21.6,N, 21.8,N, 21.6,N, 19.3,N, 19.6,N, 19.3,N, 67,N, 68,N, 66,N, 9,N, 8,N, 87,N, 14,N, 11,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,54,2000,03,20,10,54,2000,03,20,00,54, 0.0,N, 25.8,N, 25.8,N, 25.8,N, 21.6,N, 21.6,N, 21.6,N, 19.3,N, 19.3,N, 19.2,N, 67,N, 67,N, 67,N, 8,N, 4,N, 98,N, 23,N, 9,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,55,2000,03,20,10,55,2000,03,20,00,55, 0.0,N, 25.7,N, 25.8,N, 25.7,N, 21.5,N, 21.6,N, 21.5,N, 19.2,N, 19.3,N, 19.2,N, 67,N, 68,N, 66,N, 8,N, 4,N, 68,N, 15,N, 9,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,56,2000,03,20,10,56,2000,03,20,00,56, 0.0,N, 25.9,N, 25.9,N, 25.7,N, 21.7,N, 21.7,N, 21.5,N, 19.4,N, 19.4,N, 19.2,N, 67,N, 68,N, 66,N, 8,N, 5,N, 69,N, 16,N, 9,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,57,2000,03,20,10,57,2000,03,20,00,57, 0.0,N, 26.0,N, 26.0,N, 25.9,N, 21.8,N, 21.8,N, 21.7,N, 19.5,N, 19.5,N, 19.4,N, 67,N, 68,N, 66,N, 9,N, 5,N, 72,N, 10,N, 11,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
hd, 40842,2000,03,20,10,58,2000,03,20,10,58,2000,03,20,00,58, 0.0,N, 26.0,N, 26.1,N, 26.0,N, 21.7,N, 21.8,N, 21.7,N, 19.4,N, 19.5,N, 19.3,N, 66,N, 67,N, 66,N, 8,N, 5,N, 69,N, 13,N, 11,N, ,N,1018.6,N,1017.5,N,1018.6,N,#
这是我尝试的代码:
import glob
import pandas as pd
import numpy as np
from datetime import datetime
for file in glob.glob('X:/brisbaneweatherdata/*.txt'):
df = pd.read_csv(file)
col = 'Wind (1 minute) speed in km/h'
mask = pd.notnull(df[col])
df = df.loc[mask]
for date, group in df.groupby(['Year Month Day Hours Minutes in YYYY', 'MM', 'DD']):
morning_data = group[group.HH24.between(9, 12)]
gradient, intercept = np.polyfit(morning_data.HH24, morning_data['Wind (1 minute) speed in km/h'], 1)
wind_direction = np.average(morning_data['Wind (1 minute) direction in degrees true'])
if gradient > 0:
print("{0:%d, %b %Y} , {1:.2f}, {2:.2f}".format(datetime(*date), gradient, wind_direction))
然而,这是生产
runfile('X:/python/linearregression.py', wdir='X:/python')
X:/python/linearregression.py:1: DtypeWarning: Columns (17,25,27,29,31,33,35,37,55,57,59) have mixed types. Specify dtype option on import or set low_memory=False.
import glob
Traceback (most recent call last):
File "<ipython-input-19-ace8af14da2c>", line 1, in <module>
runfile('X:/python/linearregression.py', wdir='X:/python')
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 699, in runfile
execfile(filename, namespace)
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 74, in execfile
exec(compile(scripttext, filename, 'exec'), glob, loc)
File "X:/python/linearregression.py", line 10, in <module>
gradient, intercept = np.polyfit(morning_data.HH24, morning_data['Wind (1 minute) speed in km/h'], 1)
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\numpy\lib\polynomial.py", line 550, in polyfit
y = NX.asarray(y) + 0.0
TypeError: cannot concatenate 'str' and 'float' objects
如果我尝试将年份值转换为整数 float ,例如int('Year Month Day Hours Minutes in YYYY')
或 int('MM')
它产生错误 ValueError: invalid literal for int() with base 10: 'YYYY 年月日时分'
不过,在 Unutbu 的帮助下,TypeError 问题已得到解决。这会产生以下错误。
runfile('X:/python/linearregression.py', wdir='X:/python')
X:/python/linearregression.py:1: DtypeWarning: Columns (17,25,27,29,31,33,35,37,55,57,59) have mixed types. Specify dtype option on import or set low_memory=False.
import glob
C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\numpy\lib\polynomial.py:594: RankWarning: Polyfit may be poorly conditioned
warnings.warn(msg, RankWarning)
Traceback (most recent call last):
File "<ipython-input-24-ace8af14da2c>", line 1, in <module>
runfile('X:/python/linearregression.py', wdir='X:/python')
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 699, in runfile
execfile(filename, namespace)
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 74, in execfile
exec(compile(scripttext, filename, 'exec'), glob, loc)
File "X:/python/linearregression.py", line 17, in <module>
wind_direction = np.average(morning_data['Wind (1 minute) direction in degrees true'])
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\numpy\lib\function_base.py", line 570, in average
avg = a.mean(axis)
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\numpy\core\_methods.py", line 72, in _mean
ret = ret / rcount
TypeError: unsupported operand type(s) for /: 'str' and 'int'
最佳答案
错误信息
File "C:\Users\kirkj\AppData\Local\Continuum\Anaconda2\lib\site-packages\numpy\lib\polynomial.py", line 550, in polyfit
y = NX.asarray(y) + 0.0
TypeError: cannot concatenate 'str' and 'float' objects
如果 y
是包含字符串的系列,则可以重现:
In [14]: np.asarray(pd.Series(['',1.0])) + 0.0
TypeError: cannot concatenate 'str' and 'float' objects
现在如果你peek at line 550 inside polynomial.py
,您会看到 y
是传递给 np.polyfit
的第二个参数。因此,这强烈表明 morning_data['Wind (1 minute) speed in km/h']
是一个包含字符串的系列。
您发布的示例数据没有显示字符串,但在 CSV 的某个地方您可能会在该列中找到一个字符串。
现在我们怎样才能找到那个字符串呢?一种方法是将 Series 转换为数值(将无效字符串强制转换为 NaN):
col = 'Wind (1 minute) speed in km/h'
tmp = pd.to_numeric(morning_data[col], errors='coerce')
然后寻找 NaN:
mask = pd.isnull(tmp)
print(morning_data.loc[mask, col])
这将显示 'Wind (1 minute) speed in km/h'
列中无法转换为数字的所有值。
然后您可以考虑如何处理这些有问题的行。如果有只是其中的一部分,您可以手动编辑它们。或者查看 CSV 如何已生成并在源头修复错误。或者,如果你想丢弃这些行,你可以使用
for file in glob.glob('X:/brisbaneweatherdata/*.txt'):
df = pd.read_csv(file)
for col in ['Wind (1 minute) speed in km/h',
'Wind (1 minute) direction in degrees true']:
df[col] = pd.to_numeric(df[col], errors='coerce')
mask = pd.notnull(df[col])
df = df.loc[mask]
for date, group in df.groupby(['Year Month Day Hours Minutes in YYYY', 'MM', 'DD']):
morning_data = group[group.HH24.between(9, 12)]
if len(morning_data) == 0: continue
gradient, intercept = np.polyfit(morning_data['HH24'], morning_data['Wind (1 minute) speed in km/h'], 1)
wind_direction = np.average(morning_data['Wind (1 minute) direction in degrees true'])
if gradient > 0:
print("{0:%d, %b %Y} , {1:.2f}, {2:.2f}".format(datetime(*date), gradient, wind_direction))
然后其余代码应该有机会工作。
关于python - 使用pandas进行回归,报错: cannot concatenate 'str' and 'float' objects,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36706334/
我知道问题的标题听起来很奇怪,但我不知道该怎么调用它。 首先,我有一个网格布局,我希望我的 .search-wrapper 宽度为 50% 并向右浮动。在我的演示中 jsfiddle整个 .searc
我们正在使用 QA-C 来实现 MISRA C++ 一致性,但是该工具会为这样的代码喷出错误: float a = foo(); float b = bar(); float c = a - b; 据
考虑 float a[] = { 0.1, 0.2, 0.3}; 我很困惑a稍后传递给函数 foo(float* A) .不应该是 float* 类型的变量指向单个浮点数,对吗?就像这里提到的tu
这可能是我一段时间以来收到的最好的错误消息,我很好奇出了什么问题。 原代码 float currElbowAngle = LeftArm ? Elbow.transform.localRotation
刚开始学习 F#,我正在尝试为 e 生成和评估泰勒级数的前 10 项。我最初编写了这段代码来计算它: let fact n = function | 0 -> 1 | _ -> [1
我已经使用 Erlang 读取二进制文件中的 4 个字节(小端)。 在尝试将二进制转换为浮点时,我一直遇到以下错误: ** exception error: bad argument in
假设我有: float a = 3 // (gdb) p/f a = 3 float b = 299792458 // (gdb) p/f b = 29979244
我每次都想在浏览器顶部修复这个框。但是右边有一些问题我不知道如何解决所以我寻求帮助。 #StickyBar #RightSideOfStickyBar { float : right ; }
我正在研究 C# 编译器并试图理解数学运算规则。 我发现在两种不同的原始类型之间使用 == 运算符时会出现难以理解的行为。 int a = 1; float b = 1.0f; Cons
假设我有: float a = 3 // (gdb) p/f a = 3 float b = 299792458 // (gdb) p/f b = 29979244
Denormals众所周知,与正常情况相比,表现严重不佳,大约是 100 倍。这经常导致 unexpected软件 problems . 我很好奇,从 CPU 架构的角度来看,为什么非规范化必须是 那
我有一个由两个 float 组成的区间,并且需要生成 20 个随机数,看起来介于两个 float 定义的区间之间。 比方说: float a = 12.49953f float b = 39.1123
我正在构建如下矩阵: QMatrix4x3 floatPos4x3 = QMatrix4x3( floatPos0.at(0), floatPos1.at(0), floatPos2.at(0),
给定归一化的浮点数f,在f之前/之后的下一个归一化浮点数是多少。 通过微动,提取尾数和指数,我得到了: next_normalized(double&){ if mantissa is n
关于 CSS“float”属性的某些东西一直让我感到困惑。为什么将“float”属性应用到您希望 float 的元素之前的元素? 为了帮助可视化我的问题,我创建了以下 jsFiddle http://
关于 CSS“float”属性的某些东西一直让我感到困惑。为什么将“float”属性应用到您希望 float 的元素之前的元素? 为了帮助可视化我的问题,我创建了以下 jsFiddle http://
我有一个新闻源/聊天框。每个条目包含两个跨度:#user 和#message。我希望#user 向左浮动,而#message 向左浮动。如果#message 导致行超过容器宽度,#message 应该
我想创建一个“记分卡”网格来输出一些数据。如果每个 div.item 中的数据都具有相同的高度,那么在每个 div.item 上留下一个简单的 float 会提供一个漂亮的均匀布局,它可以根据浏览器大
我正在学习使用 CSS float 属性。我想了解此属性的特定效果。 考虑以下简单的 HTML 元素: div1 div2 This is a paragraph 以及以下 CSS 规则: div {
我正在尝试从可以是 int 或 float 的文件中提取数据。我发现这个正则表达式将从文件 (\d+(\.\d+)?) 中提取这两种类型,但我遇到的问题是它将 float 拆分为两个。 >>> imp
我是一名优秀的程序员,十分优秀!