gpt4 book ai didi

python - Numpy "vectorized"逐行点积运行速度比 for 循环慢

转载 作者:太空宇宙 更新时间:2023-11-04 08:42:14 25 4
gpt4 key购买 nike

给定一个形状为 (n,k) 的矩阵 A 和一个大小为 n 的向量 s,我想计算形状为 (k,k) 的矩阵 G,如下所示:

G += s[i] * A[i].T * A[i],对于 {0,... ,n-1}

我尝试使用 for 循环(方法 1)和矢量化方式(方法 2)来实现它,但是对于大值,for 循环的实现速度更快k(特别是当 k > 500 时)。

代码是这样写的:

import numpy as np
k = 200
n = 50000
A = np.random.randint(0, 1000, (n,k)) # generates random data for the matrix A (n,k)
G1 = np.zeros((k,k)) # initialize G1 as a (k,k) matrix
s = np.random.randint(0, 1000, n) * 1.0 # initialize a random vector of size n

# METHOD 1
for i in xrange(n):
G1 += s[i] * np.dot(np.array([A[i]]).T, np.array([A[i]]))

# METHOD 2
G2 = np.dot(A[:,np.newaxis].T, s[:,np.newaxis]*A)
G2 = np.squeeze(G2) # reduces dimension from (k,1,k) to (k,k)

矩阵 G1 和 G2 相同(它们是矩阵 G),唯一的区别在于它们的计算方式。有没有更聪明、更有效的方法来计算这个?

最后,这些是我为 kn 随机获得的时间:

Test #: 1
k,n: (866, 45761)
Method1: 337.457569838s
Method2: 386.290487051s
--------------------
Test #: 2
k,n: (690, 48011)
Method1: 152.999140978s
Method2: 226.080267191s
--------------------
Test #: 3
k,n: (390, 5317)
Method1: 5.28722500801s
Method2: 4.86999702454s
--------------------
Test #: 4
k,n: (222, 5009)
Method1: 1.73456382751s
Method2: 0.929286956787s
--------------------
Test #: 5
k,n: (915, 16561)
Method1: 101.782826185s
Method2: 159.167108059s
--------------------
Test #: 6
k,n: (130, 11283)
Method1: 1.53138184547s
Method2: 0.64450097084s
--------------------
Test #: 7
k,n: (57, 37863)
Method1: 1.44776391983s
Method2: 0.494270086288s
--------------------
Test #: 8
k,n: (110, 34599)
Method1: 3.51851701736s
Method2: 1.61688089371s

最佳答案

两个改进得多的版本是 -

(A.T*s).dot(A)
(A.T).dot(A*s[:,None])

method2 的问题:

使用 method2,我们正在创建 A[:,np.newaxis].T,其形状为 (k,1,n),这是一个 3D 数组。我认为对于 3D 数组,np.dot 会进入某种循环并且没有真正矢量化(源代码可以在此处显示更多信息)。

对于这样的 3D 张量乘法,最好使用等价的张量:np.tensordot .因此,method2 的改进版本变为:

G2 = np.tensordot(A[:,np.newaxis].T, s[:,np.newaxis]*A, axes=((2),(0)))
G2 = np.squeeze(G2)

由于我们使用 np.tensordot 从每个输入中求和只是一个轴,所以我们真的不需要 tensordot 这里和 squeezed-in 版本上的简单 np.dot 就足够了。这将引导我们回到 method4

运行时测试

方法-

def method1(A, s):
G1 = np.zeros((k,k)) # initialize G1 as a (k,k) matrix
for i in xrange(n):
G1 += s[i] * np.dot(np.array([A[i]]).T, np.array([A[i]]))
return G1

def method2(A, s):
G2 = np.dot(A[:,np.newaxis].T, s[:,np.newaxis]*A)
G2 = np.squeeze(G2) # reduces dimension from (k,1,k) to (k,k)
return G2

def method3(A, s):
return (A.T*s).dot(A)

def method4(A, s):
return (A.T).dot(A*s[:,None])

def method2_improved(A, s):
G2 = np.tensordot(A[:,np.newaxis].T, s[:,np.newaxis]*A, axes=((2),(0)))
G2 = np.squeeze(G2)
return G2

时间和验证-

In [56]: k = 200
...: n = 5000
...: A = np.random.randint(0, 1000, (n,k))
...: s = np.random.randint(0, 1000, n) * 1.0
...:

In [72]: print np.allclose(method1(A, s), method2(A, s))
...: print np.allclose(method1(A, s), method3(A, s))
...: print np.allclose(method1(A, s), method4(A, s))
...: print np.allclose(method1(A, s), method2_improved(A, s))
...:
True
True
True
True

In [73]: %timeit method1(A, s)
...: %timeit method2(A, s)
...: %timeit method3(A, s)
...: %timeit method4(A, s)
...: %timeit method2_improved(A, s)
...:
1 loops, best of 3: 1.12 s per loop
1 loops, best of 3: 693 ms per loop
100 loops, best of 3: 8.12 ms per loop
100 loops, best of 3: 8.17 ms per loop
100 loops, best of 3: 8.28 ms per loop

关于python - Numpy "vectorized"逐行点积运行速度比 for 循环慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43959046/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com