- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_pred)
我相信这段代码会返回我们预测的准确性。但是,我正在比较连续值的预测值和实际值,我相信它们中的大多数不会完全相同。
我是否应该拟合测试集值并绘制预测值以获得 R 平方?
谁能告诉我在连续变量的情况下如何衡量预测的准确性?
最佳答案
在机器学习中,精度是为离散值(类)定义的。它被定义为做出的总预测中正确预测的分数。
因此,预测值 319 而真实值为 320 仍然是不正确的预测。
因此不建议计算连续值的准确性。对于此类值,您可能希望计算预测值与真实值的接近程度。这种预测连续值的任务称为回归。并且一般使用R平方值来衡量模型的性能。
您可以使用 r2_score(y_true, y_pred)
适合您的场景。
回归任务(连续变量预测)有多种指标,例如:-
您可以获得有关这些指标的 sklearn 实现的更多信息 here .
关于python - 计算预测连续值的准确度分数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49103139/
由于我正在为 iPhone 进行开发,所以我刚刚购买了 iPhone 4 来测试我的应用程序,该应用程序需要测量我的位置坐标。我的 iPhone 上没有任何互联网(3GS、GPRS 或其他...),问
我正在尝试构建一个正则表达式,对于“人类导航的浏览器”的User-Agent:计算结果为 true,但对于机器人则为 false。不用说,匹配不会精确,但如果在 90% 的情况下都能正确匹配,那就足够
我将使用 Python 中的 OpenCV 和 pytesseract 的 OCR 从图片中提取文本。我有这样一张图片: 然后我编写了一些代码来从该图片中提取文本,但它没有足够的准确性来正确提取文本。
我正在尝试使用 vars 学习向量自回归模型R 中的包。这个包没有任何方法来衡量返回模型的准确性。 具体来说,我想使用 accuracy 中定义的 MASE来自 forecast 的函数R 中的包,以
我的工作是计划使用UIMA集群运行文档以提取命名实体,而不提取命名实体。据我了解,UIMA打包的NLP组件很少。我已经测试GATE一段时间了,对此相当满意。在普通文本上还可以,但是当我们通过一些代表性
我正在使用 libSVM(带有线性内核)训练和交叉验证(10 倍)数据。 数据由 1800 个 fMRI 强度体素组成,表示为单个数据点。svm-train 的训练集文件中约有 88 个数据点。 训练
我正在运行一个很大的单元测试列表,这些单元测试正在检查各种不同的类获取和设置。我遇到了一些错误,因为我的测试运行太快?!? 举个简单的例子,单元测试从模拟一个带有评论的博客开始; Blog b = n
我正在进行一项实验,其目标是将脑电图时间序列数据分为 3 类。然而,每当我进行训练时,我的损失都是 NaN,准确度是 0.0。 我的数据有 150 步长,有 4 个 channel 。全部归一化在 0
我已经编写了一个检测 IBeacons 的应用程序(swift,IOS)。虽然我可以正确检测到另一部 iPhone 的 RSSI、准确性和接近度,但在检测到我的信标 (Qualcomm) 时,它会被发
我有包含两列的 csv 文件: category, description 文件中有 1030 个类别,只有大约 12,600 行 我需要获得一个文本分类模型,并根据这些数据进行训练。我使用 kera
问题描述 我正在阅读 François Chollet ( publisher webpage , notebooks on github ) 的“Python 中的深度学习”。复制第 6 章中的示例
我对深度学习非常陌生:我正在 Udemy 上学习深度学习类(class)。一旦我执行我的代码,它会说: ValueError:模型未配置为计算准确性。您应该将 metrics=["accuracy"]
我是一名优秀的程序员,十分优秀!