- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试将一些数据拟合到非线性函数中,并想尝试使用模型函数,看看是否可以获得比现有函数更好的拟合。当我试图弄清楚事情的时候,我想出了更多的问题。我有:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import least_squares
from scipy.optimize import curve_fit
temperature = [ 38., 40., 42., 44., 46., 48., 50., 52., 54., 56., 58., 60., 62., 64., 66., 68., 70., 71.9, 73.81, 75.69, 77.6, 79.49, 81.38, 83.29, 85.19, 87.11, 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100. ]
exp_rate = [ 8.71171203e-01, 1.15342914e+00, 1.39178845e+00, 1.66700007e+00, 1.96267002e+00, 2.32390602e+00, 2.68542886e+00, 3.13116448e+00, 3.60152705e+00, 4.12575295e+00, 4.67617489e+00, 5.29745193e+00, 6.06796117e+00, 6.99056274e+00, 8.40124338e+00, 1.04449551e+01, 1.38236107e+01, 1.96811651e+01, 2.91545190e+01, 4.67945718e+01, 7.36377025e+01, 1.19474313e+02, 1.91938580e+02, 3.07692308e+02, 4.92610837e+02, 7.87401575e+02, 1.20738388e+03, 1.51773627e+03, 1.89049140e+03, 2.33880380e+03, 2.90892166e+03, 3.53003887e+03, 4.28065700e+03, 5.15251443e+03, 6.18043152e+03, 7.49720729e+03, 9.57524225e+03, 1.17175325e+04]
def Orbach_Raman(temperature, pre_1, U_1, C, n): # This is my model function
return np.array( (1./pre_1)*np.exp(-U_1/(temperature)) + C*(temperature**n) )
pre_1, U_1, C, n = np.array([1.17E-12, 1815, 1E-6, 3.77]) # Define the starting guess
guess = pre_1, U_1, C, n
popt_stret, pcov = curve_fit(Orbach_Raman, temperature, exp_rate, p0=guess)
但是 curve_fit() 找不到最佳参数并且它提高了
File "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py", line 680, in curve_fit
raise RuntimeError("Optimal parameters not found: " + errmsg)
RuntimeError: Optimal parameters not found: Number of calls to function has reached maxfev = 1000.
这很奇怪,因为开始的猜测已经提供了非常好的数据拟合
plt.loglog(temperature, exp_rate, '-o')
plt.loglog(temperature, Orbach_Raman(temperature, pre_1, U_1, C, n ), '-*')
plt.show()
然后我尝试编写自己的误差函数以使用 least_square() 而不是 curve_fit(),为此我将其添加到之前的代码中
def error(guess, rate):
pre_1, U_1, C, n = guess
return Orbach_Raman(temperature, pre_1, U_1, C, n) - rate
least_squares(error(guess, exp_rate), guess, args=(exp_rate))
出现以下错误
File "fit_experiment.py", line 46, in <module>
least_squares(error(guess, exp_rate), guess, args=(exp_rate))
File "/usr/lib/python2.7/dist-packages/scipy/optimize/_lsq/least_squares.py", line 769, in least_squares
f0 = fun_wrapped(x0)
File "/usr/lib/python2.7/dist-packages/scipy/optimize/_lsq/least_squares.py", line 764, in fun_wrapped
return np.atleast_1d(fun(x, *args, **kwargs))
TypeError: 'numpy.ndarray' object is not callable
有没有人知道
最佳答案
我认为答案是:
我不确定。与其说是“多次迭代后放弃”不如说是“失败”。你看过结果了吗?
我还建议,由于您的情节实际上(并且明智地)采用对数刻度,因此您也可以适合对数刻度。也就是说,让您的模型函数返回模型的日志,并拟合 log(exp_rate)
。
这是因为 least_squares()
希望第一个参数是返回残差的函数,不是计算出的残差。因此,使用 least_squares(error, guess...)
而不是 least_squares(error(guess, exp_rate), guess, ...)
。
这是因为在 Python 中“包含 1 个元素的元组”的说法很容易被愚弄。 args=(exp_rate)
被解释为一个包含 exp_rate
组件的元组(可能有 39 个数据点),而不是“一个包含一个元素的元组,第一个元素是 exp_rate
。你想要的是添加一个尾随逗号(这是真正定义元组的内容,而不是括号): args=(exp_rate, )
希望对您有所帮助。
关于python - 编写错误函数以在 python 中提供 scipy.optimize.least_squares,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50238052/
我正在尝试运行以下代码片段,以使曲线适合一些经验数据,但在Julia Optim.jl包中,optimize()方法一直存在问题。我正在使用Julia v1.1.0,并安装了所有正确的软件包。我不断收
时不时你会听到一些故事,这些故事旨在说明某人在某件事上有多擅长,有时你会听到这个人如何热衷于代码优化,以至于他优化了他的延迟循环。 因为这听起来确实是一件奇怪的事情,因为启动“计时器中断”而不是优化的
我正在尝试使用 z3py 作为优化求解器来最大化从一张纸上切出的长方体的体积。 python API 提供了 Optimize() 对象,但使用它似乎不可靠,给我的解决方案显然不准确。 我尝试使用 h
我今天接受了采访。这个问题是为了优化下面的代码。如果我们将在 for 循环之后看到下面的代码,那么下面有四个“if-else”步骤。所以,面试官要求我将其优化为 3 if-else 行。我已经尝试了很
我使用BFGS算法使用Optim.jl库来最小化Julia中的函数。今天,我问了一个关于同一个库的question,但是为了避免混淆,我决定将它分成两部分。 我还想对优化后的负逆黑森州进行估算,以进行
在 haskell 平台中实现许多功能时有一个非常常见的模式让我很困扰,但我找不到解释。这是关于使用嵌套函数进行优化。 where 子句中的嵌套函数旨在进行尾递归的原因对我来说非常清楚(如 lengt
我目前正试图利用 Julia 中的 Optim 包来最小化成本函数。成本函数是 L2 正则化逻辑回归的成本函数。其构造如下; using Optim function regularised_cost
我正在使用 GEKKO 来解决非线性规划问题。我的目标是将 GEKKO 性能与替代方案进行比较,因此我想确保我从 GEKKO 中获得其所能提供的最佳性能。 有n个二元变量,每个变量都分配有一个权
我可以手动更改参数C和epsilon以获得优化结果,但我发现有PSO(或任何其他优化算法)对SVM进行参数优化。没有算法。什么意思:PSO如何自动优化SVM参数?我读了几篇关于这个主题的论文,但我仍然
我正在使用 scipy.optimize.fmin_l_bfgs_b 来解决高斯混合问题。混合分布的均值通过回归建模,其权重必须使用 EM 算法进行优化。 sigma_sp_new, func_val
当你有一个 Option ,编译器知道 NULL永远不是 &T 的可能值, 和 encodes the None variant as NULL instead .这样可以节省空间: use std:
当你有一个 Option ,编译器知道 NULL永远不是 &T 的可能值, 和 encodes the None variant as NULL instead .这样可以节省空间: use std:
以下是说明我的问题的独立示例。 using Optim χI = 3 ψI = 0.5 ϕI(z) = z^-ψI λ = 1.0532733 V0 = 0.8522423425 zE = 0.598
根据MySQL文档关于Optimizing Queries With Explain : * ALL: A full table scan is done for each combination o
我无法预览我的 Google 优化工具体验。 Google 优化抛出以下错误: 最佳答案 我也经常遇到这种情况。 Google 给出的建议是错误的。清除 cookie 并重新启动浏览器并不能解决问题。
我一直在尝试使用 optim()或 optimize()函数来最小化绝对预测误差的总和。 我有 2 个向量,每个长度为 28,1 个包含预测数据,另一个包含过去 28 天的实际数据。 fcst和 ac
在我对各种编译器书籍和网站的独立研究中,我了解到编译器可以优化正在编译的代码的许多不同方法,但我很难弄清楚每种优化会带来多少好处给予。 大多数编译器编写者如何决定首先实现哪些优化?或者哪些优化值得付出
我在我的项目中使用 System.Web.Optimizations BundleConfig。我在我的网站上使用的特定 jQuery 插件遇到了问题。如果我将文件添加到我的 ScriptBundle
我收到这个错误 Error: webpack.optimize.CommonsChunkPlugin has been removed, please use config.optimization.
scipy的optimize.fmin和optimize.leastsq有什么区别?它们似乎在 this example page 中以几乎相同的方式使用.我能看到的唯一区别是 leastsq 实际上
我是一名优秀的程序员,十分优秀!