我有一个如下所示的数据框:
df = pd.DataFrame({'hard': [['525', '21']], 'soft': [['1525', '221']], 'set': [['5245', '271']], 'purch': [['925', '201']], \
'mont': [['555', '621']], 'gest': [['536', '251']], 'memo': [['825', '241']], 'raw': [['532', '210']]})
df
Out:
gest hard memo mont purch raw set soft
0 [536, 251] [525, 21] [825, 241] [555, 621] [925, 201] [532, 210] [5245, 271] [1525, 221]
我应该像这样拆分所有列:
df1 = pd.DataFrame()
df1['gest_pos'] = df.gest.str[0].astype(int)
df1['gest_size'] = df.gest.str[1].astype(int)
df1['hard_pos'] = df.hard.str[0].astype(int)
df1['hard_size'] = df.hard.str[1].astype(int)
df1
gest_pos gest_size hard_pos hard_size
0 536 251 525 21
我有 70 多列,我的方法占用了大量的空间和时间。有没有更简单的方法来完成这项工作?
谢谢!
不同的方法:
df2 = pd.DataFrame()
for column in df:
df2['{}_pos'.format(column)] = df[column].str[0].astype(int)
df2['{}_size'.format(column)] = df[column].str[1].astype(int)
print(df2)
我是一名优秀的程序员,十分优秀!