- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个代表灰度图像的 2D numpy 数组。我需要提取该数组中的每个 N x N 子数组,子数组之间有指定的重叠,并计算一个属性,例如均值、标准差或中位数。
下面的代码执行此任务但速度很慢,因为它使用 Python for 循环。关于如何矢量化此计算或以其他方式加速计算的任何想法?
import numpy as np
img = np.random.randn(100, 100)
N = 4
step = 2
h, w = img.shape
out = []
for i in range(0, h - N, step):
outr = []
for j in range(0, w - N, step):
outr.append(np.mean(img[i:i+N, j:j+N]))
out.append(outr)
out = np.array(out)
最佳答案
对于均值和标准差,有一个基于cumsum
的快速解决方案。
这是 500x200 图像、30x20 窗口和步长 5 和 3 的时间。为了比较,我使用 skimage.util.view_as_windows
和 numpy 均值和标准差。
mn + sd using cumsum 1.1531693299184553 ms
mn using view_as_windows 3.495307120028883 ms
sd using view_as_windows 21.855629019846674 ms
代码:
import numpy as np
from math import gcd
from timeit import timeit
def wsum2d(A, winsz, stepsz, canoverwriteA=False):
M, N = A.shape
m, n = winsz
i, j = stepsz
for X, x, s in ((M, m, i), (N, n, j)):
g = gcd(x, s)
if g > 1:
X //= g
x //= g
s //= g
A = A[:X*g].reshape(X, g, -1).sum(axis=1)
elif not canoverwriteA:
A = A.copy()
canoverwriteA = True
A[x:] -= A[:-x]
A = A.cumsum(axis=0)[x-1::s]
A = A.T
return A
def w2dmnsd(A, winsz, stepsz):
# combine A and A*A into a complex, so overheads apply only once
M21 = wsum2d(A*(A+1j), winsz, stepsz, True)
M2, mean_ = M21.real / np.prod(winsz), M21.imag / np.prod(winsz)
sd = np.sqrt(M2 - mean_*mean_)
return mean_, sd
# test
np.random.seed(0)
A = np.random.random((500, 200))
wsz = (30, 20)
stpsz = (5, 3)
mn, sd = w2dmnsd(A, wsz, stpsz)
from skimage.util import view_as_windows
Av = view_as_windows(A, wsz, stpsz) # this emits a warning on my system
assert np.allclose(mn, np.mean(Av, axis=(2, 3)))
assert np.allclose(sd, np.std(Av, axis=(2, 3)))
from timeit import repeat
print('mn + sd using cumsum ', min(repeat(lambda: w2dmnsd(A, wsz, stpsz), number=100))*10, 'ms')
print('mn using view_as_windows', min(repeat(lambda: np.mean(Av, axis=(2, 3)), number=100))*10, 'ms')
print('sd using view_as_windows', min(repeat(lambda: np.std(Av, axis=(2, 3)), number=100))*10, 'ms')
关于python - 对二维 numpy 数组中的每个 NXN 子数组执行计算的最快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53854069/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!