- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
对于(可能具有误导性的)标题和可能令人困惑的问题本身,我深表歉意,我在措辞问题上费了很大劲,尤其是将它压缩成一个句子作为标题。我想使用 python 找到具有两个变量 w
和 t
的函数 f(w, t, some_other_args)
的根。真正的函数结构真的又长又复杂,你可以在这篇文章的最后找到它。重要的是它包含以下行:
k = 1.5 * m.sqrt((1.0 - w) / (1.0 - 0.25 * w))
这意味着 w
不能超过 1,因为那样会导致计算负数的平方根,这当然是不可能的。我有使用函数中的其他值计算 w
和 t
的近似值的算法,但它们非常不准确。
因此,我尝试使用 scipy.optimize.fsolve
计算根(在尝试了我可以在网上找到的所有求根算法之后,我发现这个算法最适合我的函数)使用这些近似值作为起点,看起来像这样:
solution = optimize.fsolve(f, x0=np.array([t_approx, w_approx]), args=(some_other_args))
对于大多数值,这工作得很好。但是,如果 w
太接近 1,那么 fsolve
会尝试为 w
尝试一些大于 1 的值,这在反过来,引发 ValueError
(因为计算负数的根在数学上是不可能的)。这是打印出 fsolve
使用的值的示例,其中 w
应该在 0.997 左右:
w_approx: 0.9960090844989311
t_approx: 24.26777844720981
Values: t:24.26777844720981, w:0.9960090844989311
Values: t:24.26777844720981, w:0.9960090844989311
Values: t:24.26777844720981, w:0.9960090844989311
Values: t:24.267778808827888, w:0.9960090844989311
Values: t:24.26777844720981, w:0.996009099340623
Values: t:16.319554685876746, w:1.0096680915775516
solution = optimize.fsolve(f, x0=np.array([t_approx, w_approx]), args=(some_other_args))
File "C:\Users\...\venv\lib\site-packages\scipy\optimize\minpack.py", line 148, in fsolve
res = _root_hybr(func, x0, args, jac=fprime, **options)
File "C:\Users\...\venv\lib\site-packages\scipy\optimize\minpack.py", line 227, in _root_hybr
ml, mu, epsfcn, factor, diag)
File "C:\Users\...\algorithm.py", line 9, in f
k = 1.5 * m.sqrt((1.0 - w) / (1.0 - 0.25 * w))
ValueError: math domain error
那么,我如何告诉 optimize.fsolve
w
不能大于 1?或者做这样的事情的替代算法是什么(我知道 brentq
等等,但所有这些都需要为 both 根提供一个间隔,我不知道想做。)?
测试代码(此处需要注意的重要事项:即使 func
理论上应该计算 R
和 T
给定 t
和 w
,我必须反过来使用它。它有点笨拙,但我根本无法重写函数以使其接受 T, R
来计算 t, w
- 对于我平庸的数学专业知识来说有点太多了 ;)) :
import math as m
from scipy import optimize
import numpy as np
def func(t, w, r_1, r_2, r_3):
k = 1.5 * m.sqrt((1.0 - w) / (1.0 - 0.25 * w))
k23 = 2 * k / 3
z1 = 1 / (1 + k23)
z2 = 1 / (1 - k23)
z3 = 3 * ((1 / 5 + r_1 - r_2 - 1 / 5 * r_1 * r_2) / (z1 - r_2 * z2)) * m.exp(t * (k - 1))
z4 = -(z2 - r_2 * z1) / (z1 - r_2 * z2) * m.exp(2 * k * t)
z5 = -(z1 - r_2 * z2) / (z2 - r_2 * z1)
z6 = 3 * (1 - r_2 / 5) / (z2 - r_2 * z1)
beta_t = r_3 / (z2 / z1 * m.exp(2 * k * t) + z5) * (z6 - 3 / (5 * z1) * m.exp(t * (k - 1)))
alpha_t = beta_t * z5 - r_3 * z6
beta_r = (z3 - r_1 / 5 / z2 * m.exp(-2 * t) * 3 - 3 / z2) / (z1 / z2 + z4)
alpha_r = -z1 / z2 * beta_r - 3 / z2 - 3 / 5 * r_1 / z2 * m.exp(-2 * t)
It_1 = 1 / 4 * w / (1 - 8 / 5 * w) * (alpha_t * z2 * m.exp(-k * t) + beta_t * z1 * m.exp(k * t) + 3 * r_3 * m.exp(-t))
Ir_1 = (1 / 4 * w / (1 - 8 / 5 * w)) * (z1 * alpha_r + z2 * beta_r + 3 / 5 + 3 * r_1 * m.exp(-2 * t))
T = It_1 + m.exp(-t) * r_3
R = Ir_1 + m.exp(-2 * t) * r_1
return [T, R]
def calc_1(t, w, T, R, r_1, r_2, r_3):
t_begin = float(t[0])
T_new, R_new = func(t_begin, w, r_1, r_2, r_3)
a = abs(-1 + T_new/T)
b = abs(-1 + R_new/R)
return np.array([a, b])
def calc_2(x, T, R, r_1, r_2, r_3):
t = x[0]
w = x[1]
T_new, R_new = func(t, w, r_1, r_2, r_3)
a = abs(T - T_new)
b = abs(R - R_new)
return np.array([a, b])
def approximate_w(R):
k = (1 - R) / (R + 2 / 3)
w_approx = (1 - ((2 / 3 * k) ** 2)) / (1 - ((1 / 3 * k) ** 2))
return w_approx
def approximate_t(w, T, R, r_1, r_2, r_3):
t = optimize.root(calc_1, x0=np.array([10, 0]), args=(w, T, R, r_1, r_2, r_3))
return t.x[0]
def solve(T, R, r_1, r_2, r_3):
w_x = approximate_w(R)
t_x = approximate_t(w_x, T, R, r_1, r_2, r_3)
sol = optimize.fsolve(calc_2, x0=np.array([t_x, w_x]), args=(T, R, r_1, r_2, r_3))
return sol
# Values for testing:
T = 0.09986490557943692
R = 0.8918728343037964
r_1 = 0
r_2 = 0
r_3 = 1
print(solve(T, R, r_1, r_2, r_3))
最佳答案
logistic呢?正在处理您想要约束的论点?我的意思是,在 f
中,你可以做
import numpy as np
def f(free_w, ...):
w = 1/(1 + np.exp(-free_w)) # w will always lie between 0 and 1
...
return zeros
然后,您只需对 free_w
的解决方案值应用相同的逻辑转换即可获得 w
*。见
solution = optimize.fsolve(f, x0=np.array([t_approx, w_approx]), args=(some_other_args))
free_w = solution[0]
w = 1/(1 + np.exp(-free_w))
关于python - 将多元函数根的求根算法中的两个根之一括起来,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54071431/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!