- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
根据评论编辑
我正在学习 MPI,我正在做一些练习以了解它的某些方面。我编写了一个应该执行简单蒙特卡洛的代码。
其中有两个必须完成的主要循环:一个关于时间步长 T
和一个更小的关于分子数量 N
的循环。因此,在我尝试移动每个分子后,程序会转到下一个时间步。
我试图通过在不同处理器上划分对分子的操作来并行化它。不幸的是,适用于 1 个处理器的代码在 p>1 时打印出错误的 total_E
结果。问题可能出在以下函数中,更准确地说是通过调用 MPI_Allgather(local_r,n,MPI_DOUBLE,r,n,MPI_DOUBLE,MPI_COMM_WORLD);
我完全不明白为什么。我究竟做错了什么? (除了原始的并行化策略)
我的逻辑是,对于每个时间步长,我都可以计算不同处理器上分子的移动。不幸的是,当我在各种处理器上使用局部 vector local_r
计算能量差 local_DE
时,我需要全局 vector r
因为第 i 个分子的能量取决于所有其他分子。因此,我想调用 MPI_Allgather
,因为我必须更新全局 vector 和本地 vector 。
void Step(double (*H)(double,double),double* local_r,double* r,double *E_,int n,int my_rank){
int i;
double* local_rt = calloc(n,sizeof(double));
double local_DE;
for(i=0;i<n;i++){
local_rt[i] = local_r[i] + delta*((double)lrand48()/RAND_MAX-0.5);
local_rt[i] = periodic(local_rt[i]);
local_DE = E_single(H,local_rt,r,i,n,my_rank) - E_single(H,local_r,r,i,n,my_rank);
if ( local_DE <= 0.0 || exp(-local_DE) > (double) lrand48()/RAND_MAX ) {
(*E_) += local_DE;
local_r[i] = local_rt[i];
}
MPI_Allgather(local_r,n,MPI_DOUBLE,r,n,MPI_DOUBLE,MPI_COMM_WORLD);
}
return ;
}
这是完整的“工作”代码:
#define _XOPEN_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <mpi.h>
#define N 100
#define L 5.0
#define T_ 5000
#define delta 2.0
void Step(double (*)(double,double),double*,double*,double*,int,int);
double H(double ,double );
double E(double (*)(double,double),double* ,double*,int ,int );
double E_single(double (*)(double,double),double* ,double*,int ,int ,int);
double * pos_ini(void);
double periodic(double );
double dist(double , double );
double sign(double );
int main(int argc,char** argv){
if (argc < 2) {
printf("./program <outfile>\n");
exit(-1);
}
srand48(0);
int my_rank;
int p;
FILE* outfile = fopen(argv[1],"w");
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
MPI_Comm_size(MPI_COMM_WORLD,&p);
double total_E,E_;
int n;
n = N/p;
int t;
double * r = calloc(N,sizeof(double)),*local_r = calloc(n,sizeof(double));
for(t = 0;t<=T_;t++){
if(t ==0){
r = pos_ini();
MPI_Scatter(r,n,MPI_DOUBLE, local_r,n,MPI_DOUBLE, 0, MPI_COMM_WORLD);
E_ = E(H,local_r,r,n,my_rank);
}else{
Step(H,local_r,r,&E_,n,my_rank);
}
total_E = 0;
MPI_Allreduce(&E_,&total_E,1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);
if(my_rank == 0){
fprintf(outfile,"%d\t%lf\n",t,total_E/N);
}
}
MPI_Finalize();
return 0;
}
double sign(double a){
if(a < 0){
return -1.0 ;
}else{
return 1.0 ;
}
}
double periodic(double a){
if(sqrt(a*a) > L/2.0){
a = a - sign(a)*L;
}
return a;
}
double dist(double a, double b){
double d = a-b;
d = periodic(d);
return sqrt(d*d);
}
double * pos_ini(void){
double * r = calloc(N,sizeof(double));
int i;
for(i = 0;i<N;i++){
r[i] = ((double) lrand48()/RAND_MAX)*L - L/2.0;
}
return r;
}
double H(double a,double b){
if(dist(a,b)<2.0){
return exp(-dist(a,b)*dist(a,b))/dist(a,b);
}else{
return 0.0;
}
}
double E(double (*H)(double,double),double* local_r,double*r,int n,int my_rank){
double local_V = 0;
int i;
for(i = 0;i<n;i++){
local_V += E_single(H,local_r,r,i,n,my_rank);
}
local_V *= 0.5;
return local_V;
}
double E_single(double (*H)(double,double),double* local_r,double*r,int i,int n,int my_rank){
double local_V = 0;
int j;
for(j = 0;j<N;j++){
if( (i + n*my_rank) != j ){
local_V+=H(local_r[i],r[j]);
}
}
return local_V;
}
void Step(double (*H)(double,double),double* local_r,double* r,double *E_,int n,int my_rank){
int i;
double* local_rt = calloc(n,sizeof(double));
double local_DE;
for(i=0;i<n;i++){
local_rt[i] = local_r[i] + delta*((double)lrand48()/RAND_MAX-0.5);
local_rt[i] = periodic(local_rt[i]);
local_DE = E_single(H,local_rt,r,i,n,my_rank) - E_single(H,local_r,r,i,n,my_rank);
if ( local_DE <= 0.0 || exp(-local_DE) > (double) lrand48()/RAND_MAX ) {
(*E_) += local_DE;
local_r[i] = local_rt[i];
}
MPI_Allgather(local_r,n,MPI_DOUBLE,r,n,MPI_DOUBLE,MPI_COMM_WORLD);
}
return ;
}
最佳答案
由于一个简单的原因,您不能指望在给定不同数量的 MPI 进程的情况下获得相同的能量 - 生成的配置非常不同,具体取决于进程的数量。原因不是 MPI_Allgather
,而是蒙特卡洛扫描的执行方式。
给定一个过程,您尝试移动原子 1,然后是原子 2,然后是原子 3,依此类推,直到到达原子 N。每次尝试都会看到前一次的配置结果,这很好。
给定两个进程,您尝试移动原子 1,同时尝试移动原子 N/2。原子 1 都没有看到原子 N/2 的最终位移,反之亦然,但是原子 2 和 N/2+1 看到了原子 1 和原子 N/2 的位移。您最终得到两个部分配置,您只需将它们与全收集合并即可。这不等同于前一种情况,即单个进程完成所有 MC 尝试。两个以上进程的情况也是如此。
还有另一个差异来源 - 伪随机数 (PRN) 序列。在一个进程中重复调用lrand48()
产生的序列与在不同进程中多次独立调用lrand48()
产生的组合序列是不一样的,因此即使您按顺序进行试验,由于局部不同的 PRN 序列,接受度仍然会有所不同。
忘记每一步后产生的能量的具体值。在适当的 MC 模拟中,这些是微不足道的。重要的是大量步骤的平均值。无论使用何种更新算法,它们都应该相同(在与 1/sqrt(N)
成比例的一定范围内)。
关于c - 并行化错误 MPI_Allgather,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43916429/
有没有办法同时运行 2 个不同的代码块。我一直在研究 R 中的并行包,它们似乎都基于在循环中运行相同的函数。我正在寻找一种同时运行不同函数的方法(循环的 1 次迭代)。例如,我想在某个数据对象上创建一
无论如何增加 Parallel.For 启动后的循环次数?示例如下: var start = 0; var end = 5; Parallel.For(start, end, i => { C
我是 Golang 的新手,正在尝试了解并发和并行。我阅读了下面提到的关于并发和并行的文章。我执行了相同的程序。但没有得到相同的(混合字母和字符)输出。首先获取所有字母,然后获取字符。似乎并发不工作,
我正在寻找同时迭代 R 中两个或多个字符向量/列表的方法,例如。有没有办法做这样的事情: foo <- c('a','c','d') bar <- c('aa','cc','dd') for(i in
我对 Raku 很陌生,我对函数式方法有疑问,尤其是 reduce。 我最初有这样的方法: sub standardab{ my $mittel = mittel(@_); my $foo =
我最近花了很多时间来学习实时音频处理的细节,我发现的大多数库/工具都是c / c++代码或脚本/图形语言的形式,并在其中编译了c / c++代码。引擎盖。 使用基于回调的API,与GUI或App中的其
我正在使用 JMeter 进行图像负载测试。我有一个图像名称数组并遍历该数组,我通过 HTTP 请求获取所有图像。 -> loop_over_image - for loop controller
我整个晚上都在困惑这个问题...... makeflags = ['--prefix=/usr','--libdir=/usr/lib'] rootdir='/tmp/project' ps = se
我正在尝试提高计算图像平均值的方法的性能。 为此,我使用了两个 For 语句来迭代所有图像,因此我尝试使用一个 Parallel For 来改进它,但结果并不相同。 我做错了吗?或者是什么导致了差异?
假设您有一个并行 for 循环实现,例如ConcRT parallel_for,将所有工作放在一个 for 循环体内总是最好的吗? 举个例子: for(size_t i = 0; i < size()
我想并行运行一部分代码。目前我正在使用 Parallel.For 如何让10、20或40个线程同时运行 我当前的代码是: Parallel.For(1, total, (ii) =>
我使用 PAY API 进行了 PayPal 自适应并行支付,其中无论用户(买家)购买什么,都假设用户购买了总计 100 美元的商品。在我的自适应并行支付中,有 2 个接收方:Receiver1 和
我正在考虑让玩家加入游戏的高效算法。由于会有大量玩家,因此算法应该是异步的(即可扩展到集群中任意数量的机器)。有细节:想象有一个无向图(每个节点都是一个玩家)。玩家之间的每条边意味着玩家可以参加同一场
我有一个全局变量 volatile i = 0; 和两个线程。每个都执行以下操作: i++; System.out.print(i); 我收到以下组合。 12、21 和 22。 我理解为什么我没有得到
我有以下称为 pgain 的方法,它调用我试图并行化的方法 dist: /***************************************************************
我有一个 ruby 脚本读取一个巨大的表(约 2000 万行),进行一些处理并将其提供给 Solr 用于索引目的。这一直是我们流程中的一大瓶颈。我打算在这里加快速度,我想实现某种并行性。我对 Ru
我正在研究 Golang 并遇到一个问题,我已经研究了几天,我似乎无法理解 go routines 的概念以及它们的使用方式。 基本上我是在尝试生成数百万条随机记录。我有生成随机数据的函数,并将创建一
我希望 for 循环使用 go 例程并行。我尝试使用 channel ,但没有用。我的主要问题是,我想在继续之前等待所有迭代完成。这就是为什么在它不起作用之前简单地编写 go 的原因。我尝试使用 ch
我正在使用 import Control.Concurrent.ParallelIO.Global main = parallel_ (map processI [1..(sdNumber runPa
我正在尝试通过 makePSOCKcluster 连接到另一台计算机: library(parallel) cl ... doTryCatch -> recvData -> makeSOCKm
我是一名优秀的程序员,十分优秀!