- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
Numpy 应该很快。但是,当将 Numpy ufunc 与标准 Python 函数进行比较时,我发现后者要快得多。
例如,
aa = np.arange(1000000, dtype = float)
%timeit np.mean(aa) # 1000 loops, best of 3: 1.15 ms per loop
%timeit aa.mean # 10000000 loops, best of 3: 69.5 ns per loop
我用其他 Numpy 函数(如 max、power)得到了类似的结果。我的印象是 Numpy 有一个开销,这使得它对于小数组来说更慢,但对于大数组来说会更快。在上面的代码中,aa 并不小:它有 100 万个元素。我错过了什么吗?
Numpy当然是快的,只是函数好像比较慢:
bb = range(1000000)
%timeit mean(bb) # 1 loops, best of 3: 551 ms per loop
%timeit mean(list(bb)) # 10 loops, best of 3: 136 ms per loop
最佳答案
其他人已经指出你的比较不是真正的比较(你没有调用函数+都是numpy)。
但是要回答“numpy 函数慢吗?” 这个问题:一般来说,不,numpy 函数并不慢(或者不比普通 python 函数慢)。当然还有一些注意事项:
要进行您想进行的比较:
In [1]: import numpy as np
In [2]: aa = np.arange(1000000)
In [3]: bb = range(1000000)
对于 mean
(注意,python 标准库中没有 mean 函数:Calculating arithmetic mean (average) in Python):
In [4]: %timeit np.mean(aa)
100 loops, best of 3: 2.07 ms per loop
In [5]: %timeit float(sum(bb))/len(bb)
10 loops, best of 3: 69.5 ms per loop
对于 max
,numpy 与纯 python:
In [6]: %timeit np.max(aa)
1000 loops, best of 3: 1.52 ms per loop
In [7]: %timeit max(bb)
10 loops, best of 3: 31.2 ms per loop
作为最后的说明,在上面的比较中,我为 numpy 函数使用了一个 numpy 数组 (aa
),为普通 python 函数使用了一个列表 (bb
)。如果您使用带有 numpy 函数的列表,在这种情况下它会再次变慢:
In [10]: %timeit np.max(bb)
10 loops, best of 3: 115 ms per loop
因为列表首先被转换为数组(这会消耗大部分时间)。所以,如果你想在你的应用程序中依赖 numpy,使用 numpy 数组来存储你的数据是很重要的(或者如果你有一个列表,将它转换为一个数组,这样这个转换只需要完成一次)。
关于python - Numpy 函数慢吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18049523/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!