gpt4 book ai didi

c - 如果你将一个 big int 转换为 float 会发生什么

转载 作者:太空宇宙 更新时间:2023-11-04 06:27:01 49 4
gpt4 key购买 nike

这是一个关于当我使用 gcc 4.4 将一个非常大/小的带符号整数转换为 float 时究竟发生了什么的一般性问题。

我在进行转换时看到了一些奇怪的行为。以下是一些示例:

MUSTBE 是用这个方法得到的:

float f = (float)x;
unsigned int r;
memcpy(&r, &f, sizeof(unsigned int));

./btest -f float_i2f -1 0x80800001
input: 10000000100000000000000000000001
absolute value: 01111111011111111111111111111111

exponent: 10011101
mantissa: 00000000011111101111111111111111 (right shifted absolute value)

EXPECT: 11001110111111101111111111111111 (sign|exponent|mantissa)
MUST BE: 11001110111111110000000000000000 (sign ok, exponent ok,
mantissa???)

./btest -f float_i2f -1 0x3f7fffe0

EXPECT: 01001110011111011111111111111111
MUST BE: 01001110011111100000000000000000

./btest -f float_i2f -1 0x80004999


EXPECT: 11001110111111111111111101101100
MUST BE: 11001110111111111111111101101101 (<- 1 added at the end)

那么令我困扰的是,如果我只是将整数值向右移动,那么两个示例中的尾数都不同。例如末尾的零。它们来自哪里?

我只在大/小值上看到这种行为。 -2^24、2^24 范围内的值可以正常工作。

我想知道是否有人可以告诉我这里发生了什么。哪些步骤也采用非常大/小的值。

这是一个附加问题:function to convert float to int (huge integers)这不像这里的一般。

编辑代码:

unsigned float_i2f(int x) {
if (x == 0) return 0;
/* get sign of x */
int sign = (x>>31) & 0x1;

/* absolute value of x */
int a = sign ? ~x + 1 : x;

/* calculate exponent */
int e = 158;
int t = a;
while (!(t >> 31) & 0x1) {
t <<= 1;
e--;
};

/* calculate mantissa */
int m = (t >> 8) & ~(((0x1 << 31) >> 8 << 1));
m &= 0x7fffff;

int res = sign << 31;
res |= (e << 23);
res |= m;

return res;
}

编辑 2:

在 Adams 的评论和对 Write Great Code 这本书的引用之后,我用四舍五入更新了我的例程。我仍然遇到一些舍入错误(幸运的是现在只有 1 位)。

现在,如果我进行测试运行,我会得到大部分不错的结果,但会出现一些像这样的舍入误差:

input:  0xfefffff5
result: 11001011100000000000000000000101
GOAL: 11001011100000000000000000000110 (1 too low)

input: 0x7fffff
result: 01001010111111111111111111111111
GOAL: 01001010111111111111111111111110 (1 too high)

unsigned float_i2f(int x) {
if (x == 0) return 0;
/* get sign of x */
int sign = (x>>31) & 0x1;

/* absolute value of x */
int a = sign ? ~x + 1 : x;

/* calculate exponent */
int e = 158;
int t = a;
while (!(t >> 31) & 0x1) {
t <<= 1;
e--;
};

/* mask to check which bits get shifted out when rounding */
static unsigned masks[24] = {
0, 1, 3, 7,
0xf, 0x1f,
0x3f, 0x7f,
0xff, 0x1ff,
0x3ff, 0x7ff,
0xfff, 0x1fff,
0x3fff, 0x7fff,
0xffff, 0x1ffff,
0x3ffff, 0x7ffff,
0xfffff, 0x1fffff,
0x3fffff, 0x7fffff
};

/* mask to check wether round up, or down */
static unsigned HOmasks[24] = {
0,
1, 2, 4, 0x8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, 0x200000, 0x400000
};

int S = a & masks[8];
int m = (t >> 8) & ~(((0x1 << 31) >> 8 << 1));
m &= 0x7fffff;

if (S > HOmasks[8]) {
/* round up */
m += 1;
} else if (S == HOmasks[8]) {
/* round down */
m = m + (m & 1);
}

/* special case where last bit of exponent is also set in mantissa
* and mantissa itself is 0 */
if (m & (0x1 << 23)) {
e += 1;
m = 0;
}

int res = sign << 31;
res |= (e << 23);
res |= m;
return res;
}

有人知道问题出在哪里吗?

最佳答案

32 位 float 使用一些位作为指数,因此不能准确表示所有 32 位整数值。

64 位double 可以准确存储任何 32 位整数值。

维基百科在 IEEE 754 上有一个缩写条目 float ,以及 float 内部的大量细节,位于 IEEE 754-1985 — 当前标准是 IEEE 754:2008。它注意到一个 32 位 float 使用 1 位作为符号,8 位作为指数,留下 23 位显式位和 1 位隐式位作为尾数,这就是为什么最大 224 的绝对值可以是准确表示。


I thought that it was clear that a 32 bit integer can't be exactly stored into a 32bit float. My question is: What happens IF I store an integer bigger 2^24 or smaller -2^24? And how can I replicate it?

一旦绝对值大于224,32位float的尾数的24个有效位就不能精确表示整数值,所以只有前 24 位数字是可靠可用的。浮点舍入也开始。

你可以用类似这样的代码来演示: #包括 #包括

typedef union Ufloat
{
uint32_t i;
float f;
} Ufloat;

static void dump_value(uint32_t i, uint32_t v)
{
Ufloat u = { .i = v };
printf("0x%.8" PRIX32 ": 0x%.8" PRIX32 " = %15.7e = %15.6A\n", i, v, u.f, u.f);
}

int main(void)
{
uint32_t lo = 1 << 23;
uint32_t hi = 1 << 28;
Ufloat u;

for (uint32_t v = lo; v < hi; v <<= 1)
{
u.f = v;
dump_value(v, u.i);
}

lo = (1 << 24) - 16;
hi = lo + 64;

for (uint32_t v = lo; v < hi; v++)
{
u.f = v;
dump_value(v, u.i);
}

return 0;
}

示例输出:

0x00800000: 0x4B000000 =   8.3886080e+06 =  0X1.000000P+23
0x01000000: 0x4B800000 = 1.6777216e+07 = 0X1.000000P+24
0x02000000: 0x4C000000 = 3.3554432e+07 = 0X1.000000P+25
0x04000000: 0x4C800000 = 6.7108864e+07 = 0X1.000000P+26
0x08000000: 0x4D000000 = 1.3421773e+08 = 0X1.000000P+27
0x00FFFFF0: 0x4B7FFFF0 = 1.6777200e+07 = 0X1.FFFFE0P+23
0x00FFFFF1: 0x4B7FFFF1 = 1.6777201e+07 = 0X1.FFFFE2P+23
0x00FFFFF2: 0x4B7FFFF2 = 1.6777202e+07 = 0X1.FFFFE4P+23
0x00FFFFF3: 0x4B7FFFF3 = 1.6777203e+07 = 0X1.FFFFE6P+23
0x00FFFFF4: 0x4B7FFFF4 = 1.6777204e+07 = 0X1.FFFFE8P+23
0x00FFFFF5: 0x4B7FFFF5 = 1.6777205e+07 = 0X1.FFFFEAP+23
0x00FFFFF6: 0x4B7FFFF6 = 1.6777206e+07 = 0X1.FFFFECP+23
0x00FFFFF7: 0x4B7FFFF7 = 1.6777207e+07 = 0X1.FFFFEEP+23
0x00FFFFF8: 0x4B7FFFF8 = 1.6777208e+07 = 0X1.FFFFF0P+23
0x00FFFFF9: 0x4B7FFFF9 = 1.6777209e+07 = 0X1.FFFFF2P+23
0x00FFFFFA: 0x4B7FFFFA = 1.6777210e+07 = 0X1.FFFFF4P+23
0x00FFFFFB: 0x4B7FFFFB = 1.6777211e+07 = 0X1.FFFFF6P+23
0x00FFFFFC: 0x4B7FFFFC = 1.6777212e+07 = 0X1.FFFFF8P+23
0x00FFFFFD: 0x4B7FFFFD = 1.6777213e+07 = 0X1.FFFFFAP+23
0x00FFFFFE: 0x4B7FFFFE = 1.6777214e+07 = 0X1.FFFFFCP+23
0x00FFFFFF: 0x4B7FFFFF = 1.6777215e+07 = 0X1.FFFFFEP+23
0x01000000: 0x4B800000 = 1.6777216e+07 = 0X1.000000P+24
0x01000001: 0x4B800000 = 1.6777216e+07 = 0X1.000000P+24
0x01000002: 0x4B800001 = 1.6777218e+07 = 0X1.000002P+24
0x01000003: 0x4B800002 = 1.6777220e+07 = 0X1.000004P+24
0x01000004: 0x4B800002 = 1.6777220e+07 = 0X1.000004P+24
0x01000005: 0x4B800002 = 1.6777220e+07 = 0X1.000004P+24
0x01000006: 0x4B800003 = 1.6777222e+07 = 0X1.000006P+24
0x01000007: 0x4B800004 = 1.6777224e+07 = 0X1.000008P+24
0x01000008: 0x4B800004 = 1.6777224e+07 = 0X1.000008P+24
0x01000009: 0x4B800004 = 1.6777224e+07 = 0X1.000008P+24
0x0100000A: 0x4B800005 = 1.6777226e+07 = 0X1.00000AP+24
0x0100000B: 0x4B800006 = 1.6777228e+07 = 0X1.00000CP+24
0x0100000C: 0x4B800006 = 1.6777228e+07 = 0X1.00000CP+24
0x0100000D: 0x4B800006 = 1.6777228e+07 = 0X1.00000CP+24
0x0100000E: 0x4B800007 = 1.6777230e+07 = 0X1.00000EP+24
0x0100000F: 0x4B800008 = 1.6777232e+07 = 0X1.000010P+24
0x01000010: 0x4B800008 = 1.6777232e+07 = 0X1.000010P+24
0x01000011: 0x4B800008 = 1.6777232e+07 = 0X1.000010P+24
0x01000012: 0x4B800009 = 1.6777234e+07 = 0X1.000012P+24
0x01000013: 0x4B80000A = 1.6777236e+07 = 0X1.000014P+24
0x01000014: 0x4B80000A = 1.6777236e+07 = 0X1.000014P+24
0x01000015: 0x4B80000A = 1.6777236e+07 = 0X1.000014P+24
0x01000016: 0x4B80000B = 1.6777238e+07 = 0X1.000016P+24
0x01000017: 0x4B80000C = 1.6777240e+07 = 0X1.000018P+24
0x01000018: 0x4B80000C = 1.6777240e+07 = 0X1.000018P+24
0x01000019: 0x4B80000C = 1.6777240e+07 = 0X1.000018P+24
0x0100001A: 0x4B80000D = 1.6777242e+07 = 0X1.00001AP+24
0x0100001B: 0x4B80000E = 1.6777244e+07 = 0X1.00001CP+24
0x0100001C: 0x4B80000E = 1.6777244e+07 = 0X1.00001CP+24
0x0100001D: 0x4B80000E = 1.6777244e+07 = 0X1.00001CP+24
0x0100001E: 0x4B80000F = 1.6777246e+07 = 0X1.00001EP+24
0x0100001F: 0x4B800010 = 1.6777248e+07 = 0X1.000020P+24
0x01000020: 0x4B800010 = 1.6777248e+07 = 0X1.000020P+24
0x01000021: 0x4B800010 = 1.6777248e+07 = 0X1.000020P+24
0x01000022: 0x4B800011 = 1.6777250e+07 = 0X1.000022P+24
0x01000023: 0x4B800012 = 1.6777252e+07 = 0X1.000024P+24
0x01000024: 0x4B800012 = 1.6777252e+07 = 0X1.000024P+24
0x01000025: 0x4B800012 = 1.6777252e+07 = 0X1.000024P+24
0x01000026: 0x4B800013 = 1.6777254e+07 = 0X1.000026P+24
0x01000027: 0x4B800014 = 1.6777256e+07 = 0X1.000028P+24
0x01000028: 0x4B800014 = 1.6777256e+07 = 0X1.000028P+24
0x01000029: 0x4B800014 = 1.6777256e+07 = 0X1.000028P+24
0x0100002A: 0x4B800015 = 1.6777258e+07 = 0X1.00002AP+24
0x0100002B: 0x4B800016 = 1.6777260e+07 = 0X1.00002CP+24
0x0100002C: 0x4B800016 = 1.6777260e+07 = 0X1.00002CP+24
0x0100002D: 0x4B800016 = 1.6777260e+07 = 0X1.00002CP+24
0x0100002E: 0x4B800017 = 1.6777262e+07 = 0X1.00002EP+24
0x0100002F: 0x4B800018 = 1.6777264e+07 = 0X1.000030P+24

输出的第一部分表明一些整数值仍然可以准确存储;具体来说,可以准确地存储 2 的幂。事实上,更准确地说(但不太简洁),任何整数的绝对值的二进制表示不超过 24 位有效数字(任何尾随数字为零)都可以精确表示。不一定要准确打印这些值,但这与准确存储它们是不同的问题。

输出的第二部分(较大部分)表明最多 224-1,可以精确表示整数值。 224 本身的值也是可以精确表示的,但是 224+1 不是,所以它看起来和 224 一样。相比之下,224+2 可以只用 24 个二进制数字后跟 1 个零来表示,因此可以精确表示。对大于 2 的增量重复 ad nauseam。看起来好像“round even”模式有效;这就是结果显示 1 个值然后显示 3 个值的原因。

(顺便提一下,没有办法规定 double 传递给 printf() — 从 float 转换而来按照默认参数提升(ISO/IEC 9899:2011 §6.5.2.2 函数调用,¶6)的规则打印为 float() h 修饰符在逻辑上会被使用,但没有定义。)

关于c - 如果你将一个 big int 转换为 float 会发生什么,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25701319/

49 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com