gpt4 book ai didi

c - 编写混合 MPI/OpenACC 程序

转载 作者:太空宇宙 更新时间:2023-11-04 06:21:58 25 4
gpt4 key购买 nike

我正在尝试编写混合 MPI/OpenACC 代码,其中代码需要执行 8 项不同的工作(在本例中为 8 项不同的扫描)。这 8 个作业使用 MPI 划分为 [1-8] 个进程/节点,并使用 OpenACC 并行化这 8 个作业中需要完成的计算。

在每个进程完成其计算后,我减少解决方案并将最小值传递给进程 0,这是最终解决方案。

下面是生成 .txt 输出文件的完整代码 (test.c) 的 MCVE

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "mpi.h"

#define min(a,b) (a > b) ? b : a
#define max(a,b) (a < b) ? b : a

#define NPES 8 // max number of PEs allowed
#define DEFAULT_BORDER_LOCATION -1
#define DEFAULT_BORDER_DISTANCE INFINITY
#define DEFAULT_INTERIOR_DISTANCE 90000

typedef struct {
int order;
int firstLevel, lastLevel, level;
int xDim, yDim, zDim;
int xSweepOff, ySweepOff, zSweepOff;
double dx, dy, dz;
} SweepInfo;

typedef struct {
double dx, dy, dz;
int * location;
double * distance;
} Phi;

typedef struct {
int x, y, z;
} Grid3D;



void calc_dist_field( Phi * p, int totalNodes );
void write_to_file(double * dist);
static SweepInfo make_sweepInfo( Phi * p, int my_rank );
static void fast_sweep( Phi * p, SweepInfo * s );
static double solveEikonal(Phi * p, int index, int max_x, int max_y);
static void update_distance(Phi * p, int totalNodes);
static void set_distance_negative_inside(Phi * p, int totalNodes);
static void adjust_boundary( Phi * p );


// public method declarations
Grid3D make_grid3D(int x, int y, int z);
void vti_get_dimensions(FILE *vti, double *d);
void vti_get_data(FILE *vti, int *l, int b_l, double *d, double b_d, Grid3D g);

// private method declarations
static void move_file_pointer(FILE *file_ptr, int lineNumber, int r);
static void get_location(FILE *vti, int *l, int b_l, Grid3D g);
static void get_distance(FILE *vti, double *d, double b_d, Grid3D g);

static int npes; // Number of PEs
static int my_rank; // Rank of the PE
static char * fileName;
static char * outfileName;

static int NX, NY, NZ, totalNodes;

int main(int argc, char *argv[]) {

// MPI startup routine
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &npes);

fileName = argv[1];
outfileName = argv[2];
FILE *f = fopen(fileName, "r");

double dims[6];
vti_get_dimensions(f, dims);
NX = dims[0] + 3;
NY = dims[1] + 3;
NZ = dims[2] + 3;

totalNodes = NX * NY * NZ;
Phi *p = (Phi *) malloc(sizeof(Phi));
p->location = (int *) malloc(sizeof(int) * totalNodes);
p->distance = (double *) malloc(sizeof(double) * totalNodes);

p->dx = dims[3]; p->dy = dims[4]; p->dz = dims[5];

vti_get_data( f, p->location, DEFAULT_BORDER_LOCATION,
p->distance, DEFAULT_BORDER_DISTANCE,
make_grid3D(NX, NY, NZ));


update_distance(p, totalNodes);

calc_dist_field(p, totalNodes);

MPI_Finalize();
return 0;
}

void calc_dist_field( Phi * p, int totalNodes ) {

int sweepNumber = my_rank + 1;
double * tmp_dist;

MPI_Barrier(MPI_COMM_WORLD);
if(my_rank == 0){
tmp_dist = (double *) malloc( totalNodes * sizeof(double) );
}

// sn represents the sweep number
for( int sn = sweepNumber; sn <= NPES; sn += npes) {
SweepInfo s = make_sweepInfo(p, sn);

printf("PE: [%d] - performing sweep number ..... [%d/%d]\n", my_rank, sn, NPES);

fast_sweep(p, &s);

printf("PE: [%d] - completed sweep number ...... [%d/%d]\n", my_rank, sn, NPES);

}

MPI_Barrier(MPI_COMM_WORLD);
#pragma acc update host(p->distance[0:totalNodes])
MPI_Reduce(p->distance, tmp_dist, totalNodes, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);

if( my_rank == 0 ) {
free( p->distance );
p->distance = tmp_dist;
set_distance_negative_inside(p, totalNodes);
adjust_boundary(p);
write_to_file(p->distance);
printf("%s file created\n", outfileName);
}

}

static void update_distance(Phi * p, int totalNodes) {

int *l = &p->location[0];
double *d = &p->distance[0];

for(int i = 0; i < totalNodes; i++) {
if(*l != DEFAULT_BORDER_LOCATION && *d != DEFAULT_BORDER_DISTANCE ) {
*d = (*l == 1 && *d == INFINITY) ? -1 : (*d > 0.0 || *d < 0.0) ? *d : DEFAULT_INTERIOR_DISTANCE;
}
l++; d++;
}

}



void write_to_file(double * dist) {

int x = NX;
int y = NY;
int z = NZ;
char fname[255];
sprintf(fname, "%s.txt", outfileName);
FILE *fp = fopen(fname, "w");

int i,j,k;
double *t = &dist[0];
for(i = 0; i < z; i++){
for(j = 0; j < y; j++){
for(k = 0; k < x; k++) {
fprintf(fp, "%f ", *(t++));
}
fprintf(fp, "\n");
}
fprintf(fp, "\n");
}

}


static SweepInfo make_sweepInfo( Phi * p, int my_rank ) {
SweepInfo s;

s.order = my_rank;
s.firstLevel = 3;
s.lastLevel = (NX + NY + NZ) - 6;

s.xDim = NX-2; s.dx = p->dx;
s.yDim = NY-2; s.dy = p->dy;
s.zDim = NZ-2; s.dz = p->dz;

s.xSweepOff = (s.order == 4 || s.order == 8 ) ? s.xDim + 1 : 0;
s.ySweepOff = (s.order == 2 || s.order == 6 ) ? s.yDim + 1 : 0;
s.zSweepOff = (s.order == 3 || s.order == 7 ) ? s.zDim + 1 : 0;

return s;
}

static void fast_sweep( Phi * p, SweepInfo * s ) {

int start, end, incr;

start = ( s->order == 2 || s->order == 5 || s->order == 7 || s->order == 8 ) ? s->lastLevel : s->firstLevel;

if ( start == s->firstLevel ) {
end = s->lastLevel + 1;
incr = 1;
}
else {
end = s->firstLevel - 1;
incr = 0;
}

int max_x = s->xDim + 2;
int max_y = s->yDim + 2;
int max_xy = max_x * max_y;

#pragma acc data create(p[0:1]) copy(p->distance[0:totalNodes])
for(int level = start; level != end; level = (incr) ? level+1 : level-1) {
// s - start, e - end
int xs, xe, ys, ye;

xs = max(1, level-(s->yDim + s->zDim)) , ys = max(1,level-(s->xDim + s->zDim));
xe = min(s->xDim, level-(s->firstLevel-1)), ye = min(s->yDim, level-(s->firstLevel-1));

int x, y, z, i, j, k, index;
#pragma acc parallel
{
#pragma acc loop independent
for(x = xs; x <= xe; x++) {
#pragma acc loop independent
for(y = ys; y <= ye; y++) {
z = level - (x+y);
if(z > 0 && z <= NZ-2) {
i = abs(z-s->zSweepOff);
j = abs(y-s->ySweepOff);
k = abs(x-s->xSweepOff);
index = i * max_xy + j * max_x + k;
p->distance[index] = solveEikonal(p, index, NX, NY);
}
}
} // end of acc parallel
}
}
}

#pragma acc routine seq
static double solveEikonal(Phi * p, int index, int max_x, int max_y) {

int max_xy = max_x * max_y;

double dist_new = 0;
double dist_old = p->distance[index];

double dx = p->dx, dy = p->dy, dz = p->dz;
double minX = min(p->distance[index-1], p->distance[index+1]);
double minY = min(p->distance[abs(index-max_x)], p->distance[abs(index+max_x)]);
double minZ = min(p->distance[abs(index-max_xy)],p->distance[abs(index+max_xy)]);

double m[] = { minX, minY, minZ} ;
double d[] = { dx, dy, dz};

// sort the mins
for(int i = 1; i < 3; i++){
for(int j = 0; j < 3-i; j++) {
if(m[j] > m[j+1]) {
double tmp_m = m[j];
double tmp_d = d[j];
m[j] = m[j+1]; d[j] = d[j+1];
m[j+1] = tmp_m; d[j+1] = tmp_d;
}
}
}

// simplifying the variables
double m_0 = m[0], m_1 = m[1], m_2 = m[2];
double d_0 = d[0], d_1 = d[1], d_2 = d[2];
double m2_0 = m_0 * m_0, m2_1 = m_1 * m_1, m2_2 = m_2 * m_2;
double d2_0 = d_0 * d_0, d2_1 = d_1 * d_1, d2_2 = d_2 * d_2;

dist_new = m_0 + d_0;
if(dist_new > m_1) {

double s = sqrt(- m2_0 + 2 * m_0 * m_1 - m2_1 + d2_0 + d2_1);
dist_new = ( m_1 * d2_0 + m_0 * d2_1 + d_0 * d_1 * s) / (d2_0 + d2_1);

if(dist_new > m_2) {

double a = sqrt(- m2_0 * d2_1 - m2_0 * d2_2 + 2 * m_0 * m_1 * d2_2
- m2_1 * d2_0 - m2_1 * d2_2 + 2 * m_0 * m_2 * d2_1
- m2_2 * d2_0 - m2_2 * d2_1 + 2 * m_1 * m_2 * d2_0
+ d2_0 * d2_1 + d2_0 * d2_2 + d2_1 * d2_2);

dist_new = (m_2 * d2_0 * d2_1 + m_1 * d2_0 * d2_2 + m_0 * d2_1 * d2_2 + d_0 * d_1 * d_2 * a) /
(d2_0 * d2_1 + d2_0 * d2_2 + d2_1 * d2_2);
}
}

return min(dist_old, dist_new);
}



static void set_distance_negative_inside(Phi * p, int totalNodes) {

int *l = &p->location[0];
double *d = &p->distance[0];

for(int i = 0; i < totalNodes; i++) {
if(*l != DEFAULT_BORDER_LOCATION && *d != DEFAULT_BORDER_DISTANCE ) {
if( *l == 1) *d = -1;
}
l++; d++;
}

}

static void adjust_boundary( Phi * p ) {

int x, y, z, xy, i, j, k;
x = NX;
y = NY;
z = NZ;
xy = x * y;

for(i = 0; i < z; i++){
for(j = 0; j < y; j++){
for(k = 0; k < x; k++){
int I = i, J = j, K = k;
I = (i == z-1) ? I-1 : (!i) ? I+1 : I;
J = (j == y-1) ? J-1 : (!j) ? J+1 : J;
K = (k == x-1) ? K-1 : (!k) ? K+1 : K;
if( i != I || j != J || k != K) {
int l_index = i * xy + j * x + k;
int r_index = I * xy + J * x + K;
p->distance[l_index] = p->distance[r_index];
}
}
}
}
}



/**************** vti_parser ********************************/

static void move_file_pointer(FILE *file_ptr, int lineNumber, int r) {
char tmpStr[512];
if(r) rewind(file_ptr);
while (lineNumber > 0){
fgets (tmpStr, 511, file_ptr);
lineNumber--;
}
}

void vti_get_dimensions(FILE *vti, double *d) {
char tmpStr[512];
rewind(vti);
while (1) {
fgets (tmpStr, 511, vti);
if ( strstr(tmpStr, "ImageData WholeExtent") ) {
sscanf(tmpStr, " <ImageData WholeExtent=\"0 %lf 0 %lf 0 %lf\" Spacing=\"%lf %lf %lf\">",
&d[0], &d[1], &d[2], &d[3], &d[4], &d[5]);
break;
}
}
}


void vti_get_data(FILE *vti, int *l, int b_l, double *d, double b_d, Grid3D g) {

// move the file pointer to
// line 6 from beginning
move_file_pointer(vti, 6, 1);

get_location(vti, l, b_l, g);

// move the file pointer 2 lines
// forward from its last position
move_file_pointer(vti, 2, 0);

get_distance(vti, d, b_d, g);

}

static void get_location(FILE *vti, int *l, int b_l, Grid3D g) {
int i, j, k, *t = &l[0];
for (i = 0; i < g.z; i++){
for (j = 0; j < g.y; j++) {
for (k = 0; k < g.x; k++) {
// Border
if (k == 0 || k == g.x-1 || j == 0 || j == g.y-1 || i == 0 || i == g.z-1 ) {
*(t++) = b_l;
}
else{ // Interior
fscanf(vti, "%d ", t++);
}
}
}
}
}



static void get_distance(FILE *vti, double *d, double b_d, Grid3D g) {
int i, j, k;
double *t = &d[0];
for (i = 0; i < g.z; i++){
for (j = 0; j < g.y; j++) {
for (k = 0; k < g.x; k++) {
// Border distance
if (k == 0 || k == g.x-1 || j == 0 || j == g.y-1 || i == 0 || i == g.z-1 ) {
*(t++) = b_d;
}
else{ // Interior distance
fscanf(vti, "%lf ", t++);
}
}
}
}
}

Grid3D make_grid3D(int x, int y, int z){
Grid3D g;
g.x = x; g.y = y; g.z = z;

return g;
}

当我放弃 openacc 指令并使用 [1-8] 进程运行它时,代码可以正常工作,但是当使用 open acc 编译器时,我得到一个 cudaError。

调用 cuStreamSynchronize 返回错误 700:内核执行期间地址非法

MPI 编译:

mpicc -Wall -g -std=c99 -I/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/include -L/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/lib -lmpi test.c -o mpi_exec.out

OpenACC 编译:

pgcc -acc -ta=tesla:managed -Minfo=accel -g -lm -I/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/include -L/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/lib -lmpi test.c -o oacc_exec.out

要运行可执行文件,您需要传入一个输入 vti 文件和输出文件名。

mpirun -np <1-8> <executable> input.vti outputName

输入文件的链接 input.vti

我希望这段代码非常灵活,我想让它可以在具有 1 个 GPU 的单个节点上运行,同时运行 [1-8] 个进程,也可以在 [1-8] 个节点上运行,每个节点具有[1-2] 图形处理器。而且我没有使用 CUDA MPS。

我的规范

GNU/Linux x86_64
NVIDIA GeForce GTX Titan CC: 3.5

pgcc 15.7-0 64-bit target on x86-64 Linux -tp sandybridge
gcc (GCC) 4.8.1

对此有任何帮助或建议,我们将不胜感激。

编辑:

** Compiling with OpenACC

`$ pgcc -fast -ta=tesla:managed -Minfo=accel - I/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/include -L/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/lib -lmpi rcrovella.c -o withacc
PGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 88)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 142)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 143)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 308)
fast_sweep:
225, Generating copy(p[:1])
228, Loop is parallelizable
230, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
228, #pragma acc loop gang /* blockIdx.y */
230, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
solveEikonal:
246, Generating acc routine seq
262, Loop is parallelizable
263, Loop carried dependence of m prevents parallelization
Loop carried backward dependence of m prevents vectorization
Loop carried dependence of d prevents parallelization
Loop carried backward dependence of d prevents vectorization
PGC/x86-64 Linux 15.7-0: compilation completed with warnings`

** Compiling without OpenACC
pgcc -I/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/include -L/cm/shared/apps/openmpi/gcc/64/1.8.5_wocuda/lib -lmpi rcrovella.c -o noaccPGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 88)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 142)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 143)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (rcrovella.c: 308)
PGC/x86-64 Linux 15.7-0: compilation completed with warnings

** Running with OpenACC
$ mpirun -n 1 withacc ../my_test/input.vti withacc1
PE: [0] - performing sweep number ..... [1/8]
PE: [0] - completed sweep number ...... [1/8]
PE: [0] - performing sweep number ..... [2/8]
PE: [0] - completed sweep number ...... [2/8]
PE: [0] - performing sweep number ..... [3/8]
PE: [0] - completed sweep number ...... [3/8]
PE: [0] - performing sweep number ..... [4/8]
PE: [0] - completed sweep number ...... [4/8]
PE: [0] - performing sweep number ..... [5/8]
PE: [0] - completed sweep number ...... [5/8]
PE: [0] - performing sweep number ..... [6/8]
PE: [0] - completed sweep number ...... [6/8]
PE: [0] - performing sweep number ..... [7/8]
PE: [0] - completed sweep number ...... [7/8]
PE: [0] - performing sweep number ..... [8/8]
PE: [0] - completed sweep number ...... [8/8]
withacc1 file created

** Running without OpenACC
$ mpirun -n 1 noacc ../my_test/input.vti noacc1
PE: [0] - performing sweep number ..... [1/8]
PE: [0] - completed sweep number ...... [1/8]
PE: [0] - performing sweep number ..... [2/8]
PE: [0] - completed sweep number ...... [2/8]
PE: [0] - performing sweep number ..... [3/8]
PE: [0] - completed sweep number ...... [3/8]
PE: [0] - performing sweep number ..... [4/8]
PE: [0] - completed sweep number ...... [4/8]
PE: [0] - performing sweep number ..... [5/8]
PE: [0] - completed sweep number ...... [5/8]
PE: [0] - performing sweep number ..... [6/8]
PE: [0] - completed sweep number ...... [6/8]
PE: [0] - performing sweep number ..... [7/8]
PE: [0] - completed sweep number ...... [7/8]
PE: [0] - performing sweep number ..... [8/8]
PE: [0] - completed sweep number ...... [8/8]
noacc1 file created

** Compare
$ diff -q noacc1.txt withacc1.txt
Files noacc1.txt and withacc1.txt differ

最佳答案

Also in this version I couldn't get openacc to work at all however solution to this should help me a lot.

这是我发现的:

  1. 当您使用托管内存设施时:

    -ta=tesla:managed

    通常我们不在代码中包含data 指令或子句。这个想法是让 cuda 管理的内存运行时为我们管理数据移动。所以我注释掉了我认为是两个“无关的”数据指令。

  2. 我认为您的parallel 加速器指令格式不正确。我的编译器 (PGI 15.7) 告诉我并行区域中的 independent 指令不正确:

    PGCC-S-0155-Illegal context(parallel) for independent  (t2.c: 228)

    #pragma acc parallel 更改为 #pragma acc kernels 是一种可能的解决方法。

  3. 您的代码在使用 INFINITY 时发出一些编译器警告。由于这些只是警告,我没有费心去解决它们。

  4. 出于某种原因,我发现编译器在进入加速器区域时没有正确处理 SweepInfo 结构 (s)。为了解决这个问题,我修改了这个:

    int x, y, z, i, j, k, index;
    #pragma acc parallel
    {
    #pragma acc loop independent
    for(x = xs; x <= xe; x++) {
    #pragma acc loop independent
    for(y = ys; y <= ye; y++) {
    z = level - (x+y);
    if(z > 0 && z <= NZ-2) {
    i = abs(z-s->zSweepOff);
    j = abs(y-s->ySweepOff);
    k = abs(x-s->xSweepOff);

    为此:

    int x, y, z, i, j, k, index;
    int xSO = s->xSweepOff;
    int ySO = s->ySweepOff;
    int zSO = s->zSweepOff;
    #pragma acc kernels
    {
    #pragma acc loop independent
    for(x = xs; x <= xe; x++) {
    #pragma acc loop independent
    for(y = ys; y <= ye; y++) {
    z = level - (x+y);
    if(z > 0 && z <= NZ-2) {
    i = abs(z-zSO);
    j = abs(y-ySO);
    k = abs(x-xSO);

    我可能会再仔细研究一下。我认为这里要么存在我不理解的限制,要么存在编译器错误。

通过上述更改,我能够让您的代码运行完成,没有任何明显的问题。这是我修改后的代码:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "mpi.h"

#define min(a,b) (a > b) ? b : a
#define max(a,b) (a < b) ? b : a

#define NPES 8 // max number of PEs allowed
#define DEFAULT_BORDER_LOCATION -1
#define DEFAULT_BORDER_DISTANCE INFINITY
#define DEFAULT_INTERIOR_DISTANCE 90000

typedef struct {
int order;
int firstLevel, lastLevel, level;
int xDim, yDim, zDim;
int xSweepOff, ySweepOff, zSweepOff;
double dx, dy, dz;
} SweepInfo;

typedef struct {
double dx, dy, dz;
int * location;
double * distance;
} Phi;

typedef struct {
int x, y, z;
} Grid3D;



void calc_dist_field( Phi * p, int totalNodes );
void write_to_file(double * dist);
static SweepInfo make_sweepInfo( Phi * p, int my_rank );
static void fast_sweep( Phi * p, SweepInfo * s );
static double solveEikonal(Phi * p, int index, int max_x, int max_y);
static void update_distance(Phi * p, int totalNodes);
static void set_distance_negative_inside(Phi * p, int totalNodes);
static void adjust_boundary( Phi * p );


// public method declarations
Grid3D make_grid3D(int x, int y, int z);
void vti_get_dimensions(FILE *vti, double *d);
void vti_get_data(FILE *vti, int *l, int b_l, double *d, double b_d, Grid3D g);

// private method declarations
static void move_file_pointer(FILE *file_ptr, int lineNumber, int r);
static void get_location(FILE *vti, int *l, int b_l, Grid3D g);
static void get_distance(FILE *vti, double *d, double b_d, Grid3D g);

static int npes; // Number of PEs
static int my_rank; // Rank of the PE
static char * fileName;
static char * outfileName;

static int NX, NY, NZ, totalNodes;

int main(int argc, char *argv[]) {

// MPI startup routine
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &npes);

fileName = argv[1];
outfileName = argv[2];
FILE *f = fopen(fileName, "r");

double dims[6];
vti_get_dimensions(f, dims);
NX = dims[0] + 3;
NY = dims[1] + 3;
NZ = dims[2] + 3;

totalNodes = NX * NY * NZ;
Phi *p = (Phi *) malloc(sizeof(Phi));
p->location = (int *) malloc(sizeof(int) * totalNodes);
p->distance = (double *) malloc(sizeof(double) * totalNodes);

p->dx = dims[3]; p->dy = dims[4]; p->dz = dims[5];

vti_get_data( f, p->location, DEFAULT_BORDER_LOCATION,
p->distance, DEFAULT_BORDER_DISTANCE,
make_grid3D(NX, NY, NZ));


update_distance(p, totalNodes);

calc_dist_field(p, totalNodes);

MPI_Finalize();
return 0;
}

void calc_dist_field( Phi * p, int totalNodes ) {

int sweepNumber = my_rank + 1;
double * tmp_dist;

MPI_Barrier(MPI_COMM_WORLD);
if(my_rank == 0){
tmp_dist = (double *) malloc( totalNodes * sizeof(double) );
}

// sn represents the sweep number
for( int sn = sweepNumber; sn <= NPES; sn += npes) {
SweepInfo s = make_sweepInfo(p, sn);

printf("PE: [%d] - performing sweep number ..... [%d/%d]\n", my_rank, sn, NPES);

fast_sweep(p, &s);

printf("PE: [%d] - completed sweep number ...... [%d/%d]\n", my_rank, sn, NPES);

}

MPI_Barrier(MPI_COMM_WORLD);
// #pragma acc update host(p->distance[0:totalNodes])
MPI_Reduce(p->distance, tmp_dist, totalNodes, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);

if( my_rank == 0 ) {
free( p->distance );
p->distance = tmp_dist;
set_distance_negative_inside(p, totalNodes);
adjust_boundary(p);
write_to_file(p->distance);
printf("%s file created\n", outfileName);
}

}

static void update_distance(Phi * p, int totalNodes) {

int *l = &p->location[0];
double *d = &p->distance[0];

for(int i = 0; i < totalNodes; i++) {
if(*l != DEFAULT_BORDER_LOCATION && *d != DEFAULT_BORDER_DISTANCE ) {
*d = (*l == 1 && *d == INFINITY) ? -1 : (*d > 0.0 || *d < 0.0) ? *d : DEFAULT_INTERIOR_DISTANCE;
}
l++; d++;
}

}



void write_to_file(double * dist) {

int x = NX;
int y = NY;
int z = NZ;
char fname[255];
sprintf(fname, "%s.txt", outfileName);
FILE *fp = fopen(fname, "w");

int i,j,k;
double *t = &dist[0];
for(i = 0; i < z; i++){
for(j = 0; j < y; j++){
for(k = 0; k < x; k++) {
fprintf(fp, "%f ", *(t++));
}
fprintf(fp, "\n");
}
fprintf(fp, "\n");
}

}


static SweepInfo make_sweepInfo( Phi * p, int my_rank ) {
SweepInfo s;

s.order = my_rank;
s.firstLevel = 3;
s.lastLevel = (NX + NY + NZ) - 6;

s.xDim = NX-2; s.dx = p->dx;
s.yDim = NY-2; s.dy = p->dy;
s.zDim = NZ-2; s.dz = p->dz;

s.xSweepOff = (s.order == 4 || s.order == 8 ) ? s.xDim + 1 : 0;
s.ySweepOff = (s.order == 2 || s.order == 6 ) ? s.yDim + 1 : 0;
s.zSweepOff = (s.order == 3 || s.order == 7 ) ? s.zDim + 1 : 0;

return s;
}

static void fast_sweep( Phi * p, SweepInfo * s ) {

int start, end, incr;

start = ( s->order == 2 || s->order == 5 || s->order == 7 || s->order == 8 ) ? s->lastLevel : s->firstLevel;

if ( start == s->firstLevel ) {
end = s->lastLevel + 1;
incr = 1;
}
else {
end = s->firstLevel - 1;
incr = 0;
}

int max_x = s->xDim + 2;
int max_y = s->yDim + 2;
int max_xy = max_x * max_y;

//#pragma acc data create(p[0:1]) copy(p->distance[0:totalNodes])
for(int level = start; level != end; level = (incr) ? level+1 : level-1) {
// s - start, e - end
int xs, xe, ys, ye;

xs = max(1, level-(s->yDim + s->zDim)) , ys = max(1,level-(s->xDim + s->zDim));
xe = min(s->xDim, level-(s->firstLevel-1)), ye = min(s->yDim, level-(s->firstLevel-1));

int x, y, z, i, j, k, index;
int xSO = s->xSweepOff;
int ySO = s->ySweepOff;
int zSO = s->zSweepOff;
#pragma acc kernels
{
#pragma acc loop independent
for(x = xs; x <= xe; x++) {
#pragma acc loop independent
for(y = ys; y <= ye; y++) {
z = level - (x+y);
if(z > 0 && z <= NZ-2) {
i = abs(z-zSO);
j = abs(y-ySO);
k = abs(x-xSO);
index = i * max_xy + j * max_x + k;
p->distance[index] = solveEikonal(p, index, NX, NY);
}
}
} // end of acc parallel
}
}
}

#pragma acc routine seq
static double solveEikonal(Phi * p, int index, int max_x, int max_y) {

int max_xy = max_x * max_y;

double dist_new = 0;
double dist_old = p->distance[index];

double dx = p->dx, dy = p->dy, dz = p->dz;
double minX = min(p->distance[index-1], p->distance[index+1]);
double minY = min(p->distance[abs(index-max_x)], p->distance[abs(index+max_x)]);
double minZ = min(p->distance[abs(index-max_xy)],p->distance[abs(index+max_xy)]);

double m[] = { minX, minY, minZ} ;
double d[] = { dx, dy, dz};

// sort the mins
for(int i = 1; i < 3; i++){
for(int j = 0; j < 3-i; j++) {
if(m[j] > m[j+1]) {
double tmp_m = m[j];
double tmp_d = d[j];
m[j] = m[j+1]; d[j] = d[j+1];
m[j+1] = tmp_m; d[j+1] = tmp_d;
}
}
}

// simplifying the variables
double m_0 = m[0], m_1 = m[1], m_2 = m[2];
double d_0 = d[0], d_1 = d[1], d_2 = d[2];
double m2_0 = m_0 * m_0, m2_1 = m_1 * m_1, m2_2 = m_2 * m_2;
double d2_0 = d_0 * d_0, d2_1 = d_1 * d_1, d2_2 = d_2 * d_2;

dist_new = m_0 + d_0;
if(dist_new > m_1) {

double s = sqrt(- m2_0 + 2 * m_0 * m_1 - m2_1 + d2_0 + d2_1);
dist_new = ( m_1 * d2_0 + m_0 * d2_1 + d_0 * d_1 * s) / (d2_0 + d2_1);

if(dist_new > m_2) {

double a = sqrt(- m2_0 * d2_1 - m2_0 * d2_2 + 2 * m_0 * m_1 * d2_2
- m2_1 * d2_0 - m2_1 * d2_2 + 2 * m_0 * m_2 * d2_1
- m2_2 * d2_0 - m2_2 * d2_1 + 2 * m_1 * m_2 * d2_0
+ d2_0 * d2_1 + d2_0 * d2_2 + d2_1 * d2_2);

dist_new = (m_2 * d2_0 * d2_1 + m_1 * d2_0 * d2_2 + m_0 * d2_1 * d2_2 + d_0 * d_1 * d_2 * a) /
(d2_0 * d2_1 + d2_0 * d2_2 + d2_1 * d2_2);
}
}

return min(dist_old, dist_new);
}



static void set_distance_negative_inside(Phi * p, int totalNodes) {

int *l = &p->location[0];
double *d = &p->distance[0];

for(int i = 0; i < totalNodes; i++) {
if(*l != DEFAULT_BORDER_LOCATION && *d != DEFAULT_BORDER_DISTANCE ) {
if( *l == 1) *d = -1;
}
l++; d++;
}

}

static void adjust_boundary( Phi * p ) {

int x, y, z, xy, i, j, k;
x = NX;
y = NY;
z = NZ;
xy = x * y;

for(i = 0; i < z; i++){
for(j = 0; j < y; j++){
for(k = 0; k < x; k++){
int I = i, J = j, K = k;
I = (i == z-1) ? I-1 : (!i) ? I+1 : I;
J = (j == y-1) ? J-1 : (!j) ? J+1 : J;
K = (k == x-1) ? K-1 : (!k) ? K+1 : K;
if( i != I || j != J || k != K) {
int l_index = i * xy + j * x + k;
int r_index = I * xy + J * x + K;
p->distance[l_index] = p->distance[r_index];
}
}
}
}
}



/**************** vti_parser ********************************/

static void move_file_pointer(FILE *file_ptr, int lineNumber, int r) {
char tmpStr[512];
if(r) rewind(file_ptr);
while (lineNumber > 0){
fgets (tmpStr, 511, file_ptr);
lineNumber--;
}
}

void vti_get_dimensions(FILE *vti, double *d) {
char tmpStr[512];
rewind(vti);
while (1) {
fgets (tmpStr, 511, vti);
if ( strstr(tmpStr, "ImageData WholeExtent") ) {
sscanf(tmpStr, " <ImageData WholeExtent=\"0 %lf 0 %lf 0 %lf\" Spacing=\"%lf %lf %lf\">",
&d[0], &d[1], &d[2], &d[3], &d[4], &d[5]);
break;
}
}
}


void vti_get_data(FILE *vti, int *l, int b_l, double *d, double b_d, Grid3D g) {

// move the file pointer to
// line 6 from beginning
move_file_pointer(vti, 6, 1);

get_location(vti, l, b_l, g);

// move the file pointer 2 lines
// forward from its last position
move_file_pointer(vti, 2, 0);

get_distance(vti, d, b_d, g);

}

static void get_location(FILE *vti, int *l, int b_l, Grid3D g) {
int i, j, k, *t = &l[0];
for (i = 0; i < g.z; i++){
for (j = 0; j < g.y; j++) {
for (k = 0; k < g.x; k++) {
// Border
if (k == 0 || k == g.x-1 || j == 0 || j == g.y-1 || i == 0 || i == g.z-1 ) {
*(t++) = b_l;
}
else{ // Interior
fscanf(vti, "%d ", t++);
}
}
}
}
}



static void get_distance(FILE *vti, double *d, double b_d, Grid3D g) {
int i, j, k;
double *t = &d[0];
for (i = 0; i < g.z; i++){
for (j = 0; j < g.y; j++) {
for (k = 0; k < g.x; k++) {
// Border distance
if (k == 0 || k == g.x-1 || j == 0 || j == g.y-1 || i == 0 || i == g.z-1 ) {
*(t++) = b_d;
}
else{ // Interior distance
fscanf(vti, "%lf ", t++);
}
}
}
}
}

Grid3D make_grid3D(int x, int y, int z){
Grid3D g;
g.x = x; g.y = y; g.z = z;

return g;
}

这是我的编译命令:

pgc++ -fast -acc -ta=tesla:managed -Minfo=accel -I/opt/pgi/linux86-64/15.7/mpi/mpich/include -L/opt/pgi/linux86-64/15.7/mpi/mpich/lib -lmpi t2.c -o t2

这是输出:

$ LD_LIBRARY_PATH=/opt/pgi/linux86-64/15.7/mpi/mpich/lib ./t2 input.vti output
PE: [0] - performing sweep number ..... [1/8]
PE: [0] - completed sweep number ...... [1/8]
PE: [0] - performing sweep number ..... [2/8]
PE: [0] - completed sweep number ...... [2/8]
PE: [0] - performing sweep number ..... [3/8]
PE: [0] - completed sweep number ...... [3/8]
PE: [0] - performing sweep number ..... [4/8]
PE: [0] - completed sweep number ...... [4/8]
PE: [0] - performing sweep number ..... [5/8]
PE: [0] - completed sweep number ...... [5/8]
PE: [0] - performing sweep number ..... [6/8]
PE: [0] - completed sweep number ...... [6/8]
PE: [0] - performing sweep number ..... [7/8]
PE: [0] - completed sweep number ...... [7/8]
PE: [0] - performing sweep number ..... [8/8]
PE: [0] - completed sweep number ...... [8/8]
output file created
$

在我的例子中,它似乎比非 OpenACC 版本运行得更快(编译时没有 -acc -ta=tesla:managed -Minfo=accel)并且我 diff-ed 创建的输出文件,它们在非 OpenACC 和 OpenACC 版本之间是相同的。

我还尝试使用 2 个 MPI 等级运行此代码。它似乎运行没有崩溃:

$ LD_LIBRARY_PATH=/opt/pgi/linux86-64/15.7/mpi/mpich/lib /opt/pgi/linux86-64/15.7/mpi/mpich/bin/mpirun -n 2 ./t2 input.vti output
PE: [1] - performing sweep number ..... [2/8]
PE: [0] - performing sweep number ..... [1/8]
PE: [0] - completed sweep number ...... [1/8]
PE: [0] - performing sweep number ..... [3/8]
PE: [1] - completed sweep number ...... [2/8]
PE: [1] - performing sweep number ..... [4/8]
PE: [0] - completed sweep number ...... [3/8]
PE: [0] - performing sweep number ..... [5/8]
PE: [1] - completed sweep number ...... [4/8]
PE: [1] - performing sweep number ..... [6/8]
PE: [0] - completed sweep number ...... [5/8]
PE: [0] - performing sweep number ..... [7/8]
PE: [1] - completed sweep number ...... [6/8]
PE: [1] - performing sweep number ..... [8/8]
PE: [0] - completed sweep number ...... [7/8]
PE: [1] - completed sweep number ...... [8/8]
output file created
$

输出数据文件与单秩版本不同,但与双秩非 OpenACC 运行生成的版本相匹配。因此,如果还有任何遗留问题,我认为它们与 MPI 相关,而不与 OpenACC 相关。

编辑:

为了扩展最后一点,让我们将 OpenACC 排除在外,而只使用 PGI 15.7 工具链附带的 MPI (MPICH):

$ /opt/pgi/linux86-64/15.7/mpi/mpich/bin/mpicc t2.c -o t2 -lmpi
PGC-W-0129-Floating point overflow. Check constants and constant expressions (t2.c: 88)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (t2.c: 142)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (t2.c: 143)
PGC-W-0129-Floating point overflow. Check constants and constant expressions (t2.c: 308)
PGC/x86-64 Linux 15.7-0: compilation completed with warnings
$ LD_LIBRARY_PATH=/opt/pgi/linux86-64/15.7/mpi/mpich/lib /opt/pgi/linux86-64/15.7/mpi/mpich/bin/mpirun -n 1 ./t2 input.vti output1rank
PE: [0] - performing sweep number ..... [1/8]
PE: [0] - completed sweep number ...... [1/8]
PE: [0] - performing sweep number ..... [2/8]
PE: [0] - completed sweep number ...... [2/8]
PE: [0] - performing sweep number ..... [3/8]
PE: [0] - completed sweep number ...... [3/8]
PE: [0] - performing sweep number ..... [4/8]
PE: [0] - completed sweep number ...... [4/8]
PE: [0] - performing sweep number ..... [5/8]
PE: [0] - completed sweep number ...... [5/8]
PE: [0] - performing sweep number ..... [6/8]
PE: [0] - completed sweep number ...... [6/8]
PE: [0] - performing sweep number ..... [7/8]
PE: [0] - completed sweep number ...... [7/8]
PE: [0] - performing sweep number ..... [8/8]
PE: [0] - completed sweep number ...... [8/8]
output1rank file created
$ LD_LIBRARY_PATH=/opt/pgi/linux86-64/15.7/mpi/mpich/lib /opt/pgi/linux86-64/15.7/mpi/mpich/bin/mpirun -n 2 ./t2 input.vti output2rank
PE: [0] - performing sweep number ..... [1/8]
PE: [1] - performing sweep number ..... [2/8]
PE: [1] - completed sweep number ...... [2/8]
PE: [1] - performing sweep number ..... [4/8]
PE: [0] - completed sweep number ...... [1/8]
PE: [0] - performing sweep number ..... [3/8]
PE: [1] - completed sweep number ...... [4/8]
PE: [1] - performing sweep number ..... [6/8]
PE: [0] - completed sweep number ...... [3/8]
PE: [0] - performing sweep number ..... [5/8]
PE: [1] - completed sweep number ...... [6/8]
PE: [1] - performing sweep number ..... [8/8]
PE: [1] - completed sweep number ...... [8/8]
PE: [0] - completed sweep number ...... [5/8]
PE: [0] - performing sweep number ..... [7/8]
PE: [0] - completed sweep number ...... [7/8]
output2rank file created
$ diff -q output1rank.txt output2rank.txt
Files output1rank.txt and output2rank.txt differ
$

关于c - 编写混合 MPI/OpenACC 程序,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33130676/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com