gpt4 book ai didi

java - Lib线性使用格式

转载 作者:太空宇宙 更新时间:2023-11-04 06:20:08 26 4
gpt4 key购买 nike

我通过以下 nuget 包在我的 C# 代码中使用 liblinear 的 .NET 实现: https://www.nuget.org/packages/Liblinear/

但是在liblinear的readme文件中,x的格式是:

结构问题描述了问题:

    struct problem
{
int l, n;
int *y;
struct feature_node **x;
double bias;
};

where `l` is the number of training data. If bias >= 0, we assume
that one additional feature is added to the end of each data
instance. `n` is the number of feature (including the bias feature
if bias >= 0). `y` is an array containing the target values. (integers
in classification, real numbers in regression) And `x` is an array
of pointers, each of which points to a sparse representation (array
of feature_node) of one training vector.

For example, if we have the following training data:

LABEL ATTR1 ATTR2 ATTR3 ATTR4 ATTR5
----- ----- ----- ----- ----- -----
1 0 0.1 0.2 0 0
2 0 0.1 0.3 -1.2 0
1 0.4 0 0 0 0
2 0 0.1 0 1.4 0.5
3 -0.1 -0.2 0.1 1.1 0.1

and bias = 1, then the components of problem are:

l = 5
n = 6

y -> 1 2 1 2 3

x -> [ ] -> (2,0.1) (3,0.2) (6,1) (-1,?)
[ ] -> (2,0.1) (3,0.3) (4,-1.2) (6,1) (-1,?)
[ ] -> (1,0.4) (6,1) (-1,?)
[ ] -> (2,0.1) (4,1.4) (5,0.5) (6,1) (-1,?)
[ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (6,1) (-1,?)

但是,在显示 java 实现的示例中: https://gist.github.com/hodzanassredin/6682771

problem.x <- [|
[|new FeatureNode(1,0.); new FeatureNode(2,1.)|]
[|new FeatureNode(1,2.); new FeatureNode(2,0.)|]
|]// feature nodes
problem.y <- [|1.;2.|] // target values

这意味着他的数据集是:

1 0 1
2 2 0

所以,他没有按照 liblinear 的稀疏格式存储节点。有人知道 lib Linear 实现的 x 的正确格式吗?

最佳答案

虽然它没有完全解决您提到的库,但我可以为您提供替代方案。这Accord.NET Framework 最近将 LIBLINEAR 的所有算法纳入其机器学习中命名空间。也是available through NuGet .

在此库中,从内存数据创建线性支持 vector 机的直接语法是

// Create a simple binary AND
// classification problem:

double[][] problem =
{
// a b a + b
new double[] { 0, 0, 0 },
new double[] { 0, 1, 0 },
new double[] { 1, 0, 0 },
new double[] { 1, 1, 1 },
};

// Get the two first columns as the problem
// inputs and the last column as the output

// input columns
double[][] inputs = problem.GetColumns(0, 1);

// output column
int[] outputs = problem.GetColumn(2).ToInt32();

// However, SVMs expect the output value to be
// either -1 or +1. As such, we have to convert
// it so the vector contains { -1, -1, -1, +1 }:
//
outputs = outputs.Apply(x => x == 0 ? -1 : 1);

创建问题后,可以使用以下方法学习线性 SVM

// Create a new linear-SVM for two inputs (a and b)
SupportVectorMachine svm = new SupportVectorMachine(inputs: 2);

// Create a L2-regularized L2-loss support vector classification
var teacher = new LinearDualCoordinateDescent(svm, inputs, outputs)
{
Loss = Loss.L2,
Complexity = 1000,
Tolerance = 1e-5
};

// Learn the machine
double error = teacher.Run(computeError: true);

// Compute the machine's answers for the learned inputs
int[] answers = inputs.Apply(x => Math.Sign(svm.Compute(x)));

但是,这假设您的数据已经在内存中。如果您想从以下位置加载数据磁盘,从 libsvm 稀疏格式的文件,您可以使用框架的 SparseReader class 。下面是有关如何使用它的示例:

// Suppose we are going to read a sparse sample file containing
// samples which have an actual dimension of 4. Since the samples
// are in a sparse format, each entry in the file will probably
// have a much smaller number of elements.
//
int sampleSize = 4;

// Create a new Sparse Sample Reader to read any given file,
// passing the correct dense sample size in the constructor
//
SparseReader reader = new SparseReader(file, Encoding.Default, sampleSize);

// Declare a vector to obtain the label
// of each of the samples in the file
//
int[] labels = null;

// Declare a vector to obtain the description (or comments)
// about each of the samples in the file, if present.
//
string[] descriptions = null;

// Read the sparse samples and store them in a dense vector array
double[][] samples = reader.ReadToEnd(out labels, out descriptions);

之后,可以使用sampleslabels vector 作为问题的输入和输出,分别。

希望对您有所帮助。

免责声明:我是这个库的作者。我回答这个问题是真诚的希望对于OP来说可能很有用,因为不久前我也遇到了同样的问题。如果主持人认为这看起来像是垃圾邮件,请随意删除。然而,我发布这个只是因为我认为它可能帮助别人。我什至在搜索现有的 C# 时错误地遇到了这个问题LIBSVM 的实现,而不是 LIBLINEAR。

关于java - Lib线性使用格式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27505646/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com