- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在 pytables 中有很长的数组和时间值对表。我需要能够对此数据执行线性插值和零阶保持插值。
目前,我正在使用 pytables 的按列切片表示法将列转换为 numpy 数组,然后将 numpy 数组提供给 scipy.interpolate.interp1d 以创建插值函数。
有更好的方法吗?
我问的原因是我的理解是将列转换为 numpy 数组基本上将它们复制到内存中。这意味着当我开始全速运行我的代码时,我将遇到麻烦,因为我将处理大到足以淹没我的桌面的数据集。如果我在这一点上有误,请纠正我。
此外,由于我要处理的数据量很大,我怀疑编写一个迭代 pytables 数组/表的函数以便自己进行插值会非常慢,因为我需要调用插值函数很多很多次(大约与我尝试插值的数据中的记录一样多)。
最佳答案
您的问题很难回答,因为内存和计算时间之间总是存在权衡,而您本质上是要求不必牺牲其中任何一个,这是不可能的。 scipy.interpolate.interp1d()
要求数组在内存中并且编写一个核外插值器要求您查询磁盘与调用它的次数成线性关系。
也就是说,您可以做一些事情,但没有一件是完美的。
您可以尝试的第一件事是对数据进行下采样。这将根据您减少采样的因素减少您需要存储在内存中的数据。缺点是您的插值要粗糙得多。幸运的是,这很容易做到。只需为您访问的列提供一个步长。对于 4 的下采样因子,你会这样做:
with tb.open_file('myfile.h5', 'r') as f:
x = f.root.mytable.cols.x[::4]
y = f.root.mytable.cols.y[::4]
f = scipy.interpolate.interp1d(x, y)
ynew = f(xnew)
如果您愿意,也可以根据可用内存调整步长。
或者,如果您为其插入值的数据集 - xnew - 仅存在于原始域的子集上,则您可以只读取原始表中新邻域中的部分。给定 10% 的软糖因素,您可以执行以下操作:
query = "{0} <= x & x <= {1}".format(xnew.min()*0.9, xnew.max()*1.1)
with tb.open_file('myfile.h5', 'r') as f:
data = f.root.mytable.read_where(query)
f = scipy.interpolate.interp1d(data['x'], data['y'])
ynew = f(xnew)
扩展这个想法,如果我们遇到 xnew
排序(单调递增)但确实扩展到整个原始域的情况,那么您可以以分块方式从磁盘上的表中读入。假设我们想要 10 个 block :
newlen = len(xnew)
chunks = 10
chunklen = newlen/ chunks
ynew = np.empty(newlen, dtype=float)
for i in range(chunks):
xnew_chunk = xnew[i*chunklen:(i+1)*chunklen]
query = "{0} <= x & x <= {1}".format(xnew_chunklen.min()*0.9,
xnew_chunklen.max()*1.1)
with tb.open_file('myfile.h5', 'r') as f:
data = f.root.mytable.read_where(query)
f = scipy.interpolate.interp1d(data['x'], data['y'])
ynew[i*chunklen:(i+1)*chunklen] = f(xnew_chunk)
在内存和 I/O 速度之间取得平衡始终是一项挑战。根据数据的规律性,您可能可以采取一些措施来加快这些策略的速度。不过,这应该足以让您入门。
关于python - 如何有效地对 Pytables 中的数据进行插值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19416773/
我收到未知数据,我想以编程方式查看相关性,并将所有完全相关的变量组合在一起(忽略方向)。在下面的数据集中,我可以手动查看相关性并说 a, f, g, h一起去吧b, d, e .我怎样才能以编程方
这个问题在这里已经有了答案: use dplyr's summarise_each to return one row per function? (3 个答案) 关闭 4 年前。 作为探索性工作的
我想要完成的是使用数组存储未知大小的多项式。我在互联网上看到的是使用一个数组,每个单元格都包含系数,度数是单元格编号,但这不是有效的,因为如果我们有一个多项式,如:6x^14+x+5。这意味着我们将从
嘿伙计们,我一直在尝试解析 HTML 文件以从中抓取文本,但时不时地,我会得到一些非常奇怪的字符,例如 à€œ。我确定是“智能引号”或弯头标点符号导致了我的所有问题,因此我的临时修复是搜索所有这些字符
我原来的 data.table 由三列组成。 site、observation_number 和 id。 例如以下是 id = z 的所有观察结果 |site|observation_number|i
"Premature optimisation is the root of all evil (but it's nice to have once you have an ugly solutio
给定这个数组 X: [1 2 3 2 3 1 4 5 7 1] 和行长度数组R: [3 2 5] 表示转换后每行的长度。 我正在寻找一个计算效率高的函数来将 X reshape 为数组 Y: [[ 1
我有一些 data.frame s: # Sample data a <- data.frame(c(1:10), c(11:20)) names(a) <- c("A", "B") b <- dat
我有点困惑。列表擅长任意位置插入,但不善于随机访问? (怎么可能)如果你不能随机访问,你怎么知道在哪里插入? 同样,如果你可以在任何位置插入,为什么你不能从那个位置高效地读取? 最佳答案 如果您已经有
我有一个向量,我想计算它的移动平均值(使用宽度为 5 的窗口)。 例如,如果有问题的向量是[1,2,3,4,5,6,7,8],那么 结果向量的第一个条目应该是 [1,2,3,4,5] 中所有条目的总和
有一个随机整数生成器,它生成随机整数并在后台运行。需求设计一个API,调用时返回当时的簇数。 簇:簇是连续整数的字典顺序。例如,在这种情况下,10,7,1,2,8,5,9 簇是 3 (1,2--5--
我想做的是将一组 (n) 项分成大小相等的组(大小为 m 的组,并且为简单起见,假设没有剩余,即 n 可以被 m 整除)。这样做多次,我想确保同一组中的任何项目都不会出现两次。 为了使这稍微更具体一些
假设我有一些包含类型排列的模板表达式,在本例中它们来自 Abstract Syntax Tree : template
我已经在这方面工作了几天,似乎没有我需要的答案。 由于担心这个被标记为重复,我将解释为什么其他问题对我不起作用。 使用 DIFFLIB for Python 的任何答案都无助于我的需求。 (我在下面描
我正在使用 NumPy 数组。 我有一个 2N 长度向量 D,并希望将其一部分 reshape 为 N x N 数组 C. 现在这段代码可以满足我的要求,但对于较大的 N 来说是一个瓶颈: ``` i
我有一个问题: 让我们考虑这样的 pandas 数据框: Width Height Bitmap 67 56 59 71 61 73 ...
我目前正在用 C 语言编写一个解析器,设计它时我需要的东西之一是一个可变字符串“类”(一组对表示实例的不透明结构进行操作的函数),我将其称为 my_string。 string 类的实例只不过是包装
假设我在 --pandas-- 数据框中有以下列: x 1 589 2 354 3 692 4 474 5 739 6 731 7 259 8 723
我有一个成员函数,它接受另一个对象的常量引用参数。我想 const_cast 这个参数以便在成员函数中轻松使用它。为此,以下哪个代码更好?: void AClass::AMember(const BC
我们目前正在将 Guava 用于其不可变集合,但我惊讶地发现他们的 map 没有方法可以轻松创建只需稍作修改的新 map 。最重要的是,他们的构建器不允许为键分配新值或删除键。 因此,如果我只想修改一
我是一名优秀的程序员,十分优秀!