- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试对 Sci Kit Learn 中的 unigrams 进行一些分析。我创建了 svmlight 格式的文件并尝试运行 MultinomialNB() KNeighborsClassifier() 和 SVC()
。我们首先尝试使用 unigrams 来做到这一点,我得到了一个 X 训练维度错误,这大概是因为给定示例中包含的唯一 unigrams 是出现在适合那里的训练中的那些。我尝试创建 svmlight 格式的训练文件,其中包括语料库中每个看到的 unigram 的占位符,即使那些不在给定示例中的也是如此。
问题是训练文件从 3 MB 膨胀到 300 MB。这导致 sklearn 加载文件时出现内存错误。有没有办法解决维度不匹配或内存溢出的问题。
X_train, y_train= load_svmlight_file(trainFile)
x_test, y_test = load_svmlight_file(testFile)
try:
clf = MultinomialNB()
clf.fit(X_train, y_train)
preds = clf.predict(x_test)
print('Input data: ' + trainFile.split('.')[0])
print('naive_bayes')
print('accuracy: ' + str(accuracy_score(y_test, preds)))
if 1 in preds:
print('precision: ' + str(precision_score(y_test, preds)))
print('recall: ' + str(recall_score(y_test, preds)))
except Exception as inst:
print 'fail in NB ' + 'Input data: ' + trainFile.split('.')[0]
print str(inst)
pass
2828 个测试示例和 1212 个测试示例,具有 18000 个不同的 unigram
编辑 我尝试使用 sklearn CountVectorizer
但我仍然遇到内存问题。这是最好的方法吗?
def fileLoadForPipeline(trainSetFile, valSetFile):
with open(trainSetFile) as json_file:
tdata = json.load(json_file)
with open(valSetFile) as json_file:
vdata = json.load(json_file)
x_train = []
x_val = []
y_train = []
y_val = []
for t in tdata:
x_train.append(t['request_text'])
y_train.append(t['requester_received_pizza'])
for v in vdata:
x_val.append(t['request_text'])
y_val.append(t['requester_received_pizza'])
return x_train, y_train, x_val, y_val
def buildPipeline(trainset, valset, norm):
x_train, y_train, x_val, y_val = fileLoadForPipeline(trainset, valset)
bigram_vectorizer = CountVectorizer(ngram_range=(1, 2), token_pattern=ur'\b\w+\b', min_df=1)
xT = bigram_vectorizer.fit_transform(x_train).toarray()
xV = bigram_vectorizer.fit_transform(x_val).toarray()
if norm:
transformer = TfidfTransformer()
xT = transformer.fit_transform(xT)
xV = transformer.fit_transform(xV)
results = []
for clf, name in ((Perceptron(n_iter=50), "Perceptron"),
(KNeighborsClassifier(n_neighbors=40), "kNN"), (MultinomialNB), (MultinomialNB(alpha=.01),'MultinomialNB'),
(BernoulliNB(alpha=.1),'BernoulliNB'),(svm.SVC(class_weight='auto'),'svc')):
print 80 * '='
print name
results.append(benchmark(clf))
最佳答案
尝试使用 scikit-learn 的 CountVectorizer
它将为您对原始文本进行特征提取。最重要的是,在一组训练示例上调用的方法 fit_transform
将自动进行词袋 unigram 转换,它跟踪在训练中找到的所有 n
个唯一单词语料库,并将每个文档转换为长度为 n
的数组,其特征可以是离散字数或二进制存在特征(取决于 binary
选项)。 CountVectorizer
的伟大之处在于它以 numpy 稀疏矩阵格式存储数据,这使得它的内存效率非常高,应该能够解决您遇到的任何内存问题。
然后您可以在以后的测试示例中调用transform
,它会像往常一样进行转换。
这也应该有助于解决任何维度问题,因为 CountVectorizer
的工作是对所有内容进行正则化。具体使用信息在这里:
http://scikit-learn.org/stable/modules/feature_extraction.html#common-vectorizer-usage
这样做的另一个好处是,您可以使用 Pipeline
将此矢量化器与分类器结合起来。让验配和测试更方便。
关于python - 使用 Scikit Learn 进行 Unigram 分析,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27337438/
来自文档: sklearn.preprocessing.MinMaxScaler.min_ : ndarray, shape (n_features,) Per feature adjustment
这是我的数据:(我重置了索引。日期应该是索引) Date A B C D 0 2013-10-07 -0.002
我正在构建一个分类器,通过贷款俱乐部数据,选择最好的 X 笔贷款。我训练了一个随机森林,并创建了通常的 ROC 曲线、混淆矩阵等。 混淆矩阵将分类器的预测(森林中树木的多数预测)作为参数。但是,我希望
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我有一个预定义的决策树,它是根据基于知识的拆分构建的,我想用它来进行预测。我可以尝试从头开始实现决策树分类器,但那样我就无法在 Scikit 函数中使用 predict 等内置函数。有没有办法将我的树
我正在使用随机森林解决分类问题。为此,我决定使用 Python 库 scikit-learn。但我对随机森林算法和这个工具都很陌生。我的数据包含许多因子变量。我用谷歌搜索,发现像我们在线性回归中所做的
我使用 Keras 回归器对数据进行回归拟合。我使用 Scikit-learn wrapper 和 Pipeline 来首先标准化数据,然后将其拟合到 Keras 回归器上。有点像这样: from s
在 scikit-learn ,有一个 的概念评分函数 .如果我们有一些预测标签和真实标签,我们可以通过调用 scoring(y_true, y_predict) 来获得分数。 .这种评分函数的一个例
我知道 train_test_split 方法将数据集拆分为随机训练和测试子集。并且使用 random_state=int 可以确保每次调用该方法时我们对该数据集都有相同的拆分。 我的问题略有不同。
我正在使用 scikit-learn 0.18.dev0。我知道之前有人问过完全相同的问题 here .我尝试了那里提供的答案,但出现以下错误 >>> def mydist(x, y): ...
我试图在 scikit-learn 中结合递归特征消除和网格搜索。正如您从下面的代码(有效)中看到的那样,我能够从网格搜索中获得最佳估计量,然后将该估计量传递给 RFECV。但是,我宁愿先进行 RFE
我是一名优秀的程序员,十分优秀!