gpt4 book ai didi

python - 单轴索引为字符串的 Numpy 数组(矩阵)

转载 作者:太空宇宙 更新时间:2023-11-04 05:53:00 34 4
gpt4 key购买 nike

在 numpy 中可以创建一个矩阵并使用方便的切片符号

arr=np.array([[1,2,3], [4,5,6], [7, 8, 9], [10,11,12]])
print (arr[2, :])
print (arr[1:2, 2])

这可以扩展到 N 维。

但是现在如果我希望拥有相同的东西,但一个轴不是数字轴,而是一个基于字符串的轴怎么办?所以索引一个元素就像:

print(arr["cylinder", :, :]) #prints all cylinders
print(arr["sphere", 4, 100]) #prints sphere of 4 radius, 100 bar
print(arr[:, 4, 100]) #prints every shape with 4 radius 100 bar

我可以为每个“组合”(所有形状、特定半径、特定压力……所有形状、所有半径、特定压力……特定形状、特定半径、特定压力)制作。一个独特的功能,但这是不可行的,那么我该如何创建它呢?

目前一切都存储为字典的字典(特别是因为只使用半径和压力的值)。如果底层存储可以保留为字典的字典 - 但添加切片/索引运算符将是黄金!


当前代码(是的,我确实有想法研究 kwargs 以使当前代码库更好地添加新点)——这只是为了防止“NP”问题而添加的:

class all_measurements(object):
def __init__(self):
self.measurements = {}

def add_measurement(self, measurement):
shape = measurement.shape
size = measurement.size
pressure = measurement.pressure
fname = measurement.filename
if shape in self.measurements:
shape_dict = self.measurements[shape]
else:
shape_dict = {}
self.measurements[shape] = shape_dict

if size in shape_dict:
size_dict = shape_dict[size]
else:
size_dict ={}
shape_dict[size] = size_dict

if pressure in size_dict:
pressure_dict = size_dict[pressure]
else:
pressure_dict = {}
size_dict[pressure] = pressure_dict

if fname in pressure_dict:
print("adding same file twice!")

pressure_dict[fname] = measurement

def get_measurements(self, shape = None, size = None, pressure = None, fname = None):
current_dict = self.measurements
if shape is None:
return current_dict
if shape in current_dict:
current_dict = current_dict[shape]
else:
return None

if size is None:
return current_dict
if size in current_dict:
current_dict = current_dict[size]
else:
return None

if pressure is None:
return current_dict
if pressure in current_dict:
current_dict = current_dict[pressure]
else:
return None

if fname is None:
return current_dict
if fname in current_dict:
return current_dict[fname]
else:
return None

最佳答案

我认为您正在寻找结构化数组,请参阅 here .

例子:

>>> import numpy as np

>>> a = np.zeros(10,dtype={'names':['a','b','c'],'formats':['f64','f64','f64']})

# write some data in a
>>> a['a'] = np.arange(10)
>>> a['b'] = np.arange(10,20)
>>> a['c'] = np.arange(20,30)

>>> a
array([(0.0, 10.0, 20.0),
(1.0, 11.0, 21.0),
(2.0, 12.0, 22.0),
(3.0, 13.0, 23.0),
(4.0, 14.0, 24.0),
(5.0, 15.0, 25.0),
(6.0, 16.0, 26.0),
(7.0, 17.0, 27.0),
(8.0, 18.0, 28.0),
(9.0, 19.0, 29.0)],
dtype=[('a', '<f4'), ('b', '<f4'), ('c', '<f4')])

>>> a['a'][2:6]
array([ 2., 3., 4., 5.], dtype=float32)

>>> a[4:8]
array([(4.0, 14.0, 24.0),
(5.0, 15.0, 25.0),
(6.0, 16.0, 26.0),
(7.0, 17.0, 27.0)],
dtype=[('a', '<f4'), ('b', '<f4'), ('c', '<f4')])

关于python - 单轴索引为字符串的 Numpy 数组(矩阵),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29210040/

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com