- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
假设我有一个 Pandas Dataframe,格式如下,基于“Dict of Dicts”组列表(也在下面)......
ITEMS={
“Item_group1”:{‘Stuff’:’Some stuf’
‘More Stuff’:’Extra Stuff’
Group:[[Iteration1, 18, 25,0], [Iteration1, 43, 67,1], [Iteration1, 87, 76,1],
[Iteration2, 45, 29,0], [Iteration2, 44, 77,1], [Iteration2, 43, 74,0]],
}
“Item_group2”:{‘Stuff’:’Some stuf’
‘More Stuff’:’Extra Stuff’
Group:[[Iteration1, 75, 564,0], [Iteration1, 21, 87,1], [Iteration1, 7, 5,1],
[Iteration2, 54, 24,0], [Iteration2, 7, 45,1], [Iteration2, 45, 745,0]],
}
以下格式的DataFrame……
Iteration Value1 Value2 Feature Active
Iteration1 18 25 0
Iteration1 3 67 1
Iteration1 87 76 1
Iteration2 45 29 0
Iteration2 44 7 1
Iteration2 43 74 0
我将如何根据“Feature Active”== 1 来分离和计算每次迭代的平均值,并忽略任何“Feature Active”==0 条目?
我有以下代码来计算 Value1 和 Value2 在将“Iteration”和“Feature Active”作为键分开后的每次迭代统计数据,但它显示“Feature Active”==0,我并不关心。
FeatureAvgs = Item_group1_DF.groupby(['Iteration’,’Feature Active'])
print np.round(FeatureAvgs[['Value1','Value2']].describe(), decimals=1)
产生以下输出……(忽略实际数字,这是从另一个数据框中获取的)
Iteration Feature Enabled
Iteration1 0 count 3672.0 3672.0
mean -1352.5 0.0
std 220.5 0.0
min -1920.0 0.0
25% -1507.2 0.0
50% -1267.0 0.0
75% -1184.0 0.0
max -785.0 0.0
1 count 580.0 580.0
mean -1368.6 -1394.5
std 151.5 157.7
min -1788.0 -1805.0
25% -1454.2 -1490.2
50% -1335.5 -1361.0
75% -1270.0 -1291.0
max -1045.0 -1033.0
Iteration2 0 count 20612.0 20612.0
mean -1073.5 0.0
std 142.3 0.0
min -1730.0 0.0
25% -1088.0 0.0
50% -1036.0 0.0
75% -1005.0 0.0
max -805.0 0.0
1 count 14718.0 14718.0
mean -1113.6 -1161.1
std 129.3 134.9
min -1773.0 -1818.0
25% -1151.0 -1214.0
50% -1095.0 -1122.0
75% -1043.0 -1075.0
max -832.0 -897.0
但我只是在该功能处于事件状态 (==1) 时的平均值之后。很抱歉问了这么长的问题,但我是 Pandas 的新手,并且仍在阅读文档
最佳答案
您可以先过滤初始 df,而不是过滤 groupby 对象:
FeatureAvgs = Item_group1_DF[item_group1_DF['Feature Enabled'] == 1].groupby(['Iteration’,’Feature Active'])[['Value1','Value2']].mean()
也没有必要使用 describe
如果你只想要 mean
只需使用 mean
,顺便说一句,您可以访问 mean
describe
的结果列通过使用:
print np.round(FeatureAvgs[['Value1','Value2']].describe()['mean'], decimals=1)
关于python - 基于列值的 Pandas DataFrame 操作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30505591/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!