gpt4 book ai didi

python - 性能改进 - 使用 Get 方法循环

转载 作者:太空宇宙 更新时间:2023-11-04 05:27:17 25 4
gpt4 key购买 nike

我已经构建了一个程序来填充数据库,到那时,它正在运行。基本上,该程序向我正在使用的应用程序发出请求(通过 REST API)返回我想要的数据,然后处理为数据库可接受的形式。

问题是:GET 方法使算法太慢,因为我正在访问特定条目的详细信息,所以对于每个条目我必须发出 1 个请求。我有接近 15000 个请求要做,银行中的每一行都需要 1 秒才能完成。

有什么方法可以使这个请求更快?我怎样才能提高这种方法的性能?顺便问一下,有什么衡量代码性能的技巧吗?

提前致谢!

代码如下:

# Retrieving all the IDs I want to get the detailed info
abc_ids = serializers.serialize('json', modelExample.objects.all(), fields=('id'))
abc_ids = json.loads(abc_ids)
abc_ids_size = len(abc_ids)

# Had to declare this guys right here because in the end of the code I use them in the functions to create and uptade the back
# And python was complaining that I stated before assign. Picked random values for them.
age = 0
time_to_won = 0
data = '2016-01-01 00:00:00'

# First Loop -> Request to the detailed info of ABC
for x in range(0, abc_ids_size):

id = abc_ids[x]['fields']['id']
url = requests.get(
'https://api.example.com/v3/abc/' + str(
id) + '?api_token=123123123')

info = info.json()
dealx = dict(info)

# Second Loop -> Picking the info I want to uptade and create in the bank
for key, result in dealx['data'].items():
# Relevant only for ModelExample -> UPTADE
if key == 'age':
result = dict(result)
age = result['total_seconds']
# Relevant only For ModelExample -> UPTADE
elif key == 'average_time_to_won':
result = dict(result)
time_to_won = result['total_seconds']

# Relevant For Model_Example2 -> CREATE
# Storing a date here to use up foward in a datetime manipulation
if key == 'add_time':
data = str(result)

elif key == 'time_stage':

# Each stage has a total of seconds that the user stayed in.
y = result['times_in_stages']
# The user can be in any stage he want, there's no rule about the order.
# But there's a record of the order he chose.
z = result['order_of_stages']

# Creating a list to fill up with all stages info and use in the bulk_create.
data_set = []
index = 0

# Setting the number of repititions base on the number of the stages in the list.
for elemento in range(0, len(z)):
data_set_i = {}
# The index is to define the order of the stages.
index = index + 1

for key_1, result_1 in y.items():
if int(key_1) == z[elemento]:
data_set_i['stage_id'] = int(z[elemento])
data_set_i['index'] = int(index)
data_set_i['abc_id'] = id

# Datetime manipulation
if result_1 == 0 and index == 1:
data_set_i['add_date'] = data

# I know that I totally repeated the code here, I was trying to get this part shorter
# But I could not get it right.
elif result_1 > 0 and index == 1:
data_t = datetime.strptime(data, "%Y-%m-%d %H:%M:%S")
data_sum = data_t + timedelta(seconds=result_1)
data_sum += timedelta(seconds=3)
data_nova = str(data_sum.year) + '-' + str(formaters.DateNine(
data_sum.month)) + '-' + str(formaters.DateNine(data_sum.day)) + ' ' + str(
data_sum.hour) + ':' + str(formaters.DateNine(data_sum.minute)) + ':' + str(
formaters.DateNine(data_sum.second))
data_set_i['add_date'] = str(data_nova)

else:
data_t = datetime.strptime(data_set[elemento - 1]['add_date'], "%Y-%m-%d %H:%M:%S")
data_sum = data_t + timedelta(seconds=result_1)
data_sum += timedelta(seconds=3)
data_nova = str(data_sum.year) + '-' + str(formaters.DateNine(
data_sum.month)) + '-' + str(formaters.DateNine(data_sum.day)) + ' ' + str(
data_sum.hour) + ':' + str(formaters.DateNine(data_sum.minute)) + ':' + str(
formaters.DateNine(data_sum.second))
data_set_i['add_date'] = str(data_nova)

data_set.append(data_set_i)

Model_Example2_List = [Model_Example2(**vals) for vals in data_set]
Model_Example2.objects.bulk_create(Model_Example2_List)

ModelExample.objects.filter(abc_id=id).update(age=age, time_to_won=time_to_won)

最佳答案

如果瓶颈在您的网络请求中,除了使用 gzip 或 deflate 但使用 requests 之外,您无能为力。 ..

The gzip and deflate transfer-encodings are automatically decoded for you.

如果想加倍确定,可以在get请求中加入如下headers。

{ 'Accept-Encoding': 'gzip,deflate'}

另一种选择是使用线程并让许多请求并行运行,如果您有大量带宽和多个内核,这是一个不错的选择。

最后,有很多不同的方法来分析 python,包括 cprofile + kcachegrind组合。

关于python - 性能改进 - 使用 Get 方法循环,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38318574/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com