gpt4 book ai didi

python - Pandas 更改索引数据类型

转载 作者:太空宇宙 更新时间:2023-11-04 05:15:44 26 4
gpt4 key购买 nike

我有一个系列normal_row,其索引值为:

Int64Index([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,
...
910, 911, 912, 913, 914, 915, 916, 917, 918, 919],
dtype='int64', length=919)

我有一个数据框resultp

resultp.index 

返回

Int64Index([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,
...
910, 911, 912, 913, 914, 915, 916, 917, 918, 919],
dtype='int64', length=919)

但是

resultp.loc[14].index

返回

Index([u'1', u'2', u'3', u'4', u'5', u'6', u'7', u'8', u'9', u'10',
...
u'910', u'911', u'912', u'913', u'914', u'915', u'916', u'917', u'918',
u'919'],
dtype='object', length=919)

这会产生问题,因为

resultp.mul(normal_row, axis = 1)

返回一个充满“NaN”值的数据框。数据框的形状也从 (919,919) 变为 (919,1838)

这似乎是因为索引类型在操作过程中发生了变化。这怎么能解决?以及为什么 pandas 不断更改索引类型,索引类型不应该与原始索引保持相同吗?

最佳答案

resultp.loc[14].index 是字符串。当您调用返回索引值为 14 的行的 loc[14] 时。这最终成为一个系列对象,其索引等于 resultp

的列
Index([u'1', u'2', u'3', u'4', u'5', u'6', u'7', u'8', u'9', u'10',
...
u'910', u'911', u'912', u'913', u'914', u'915', u'916', u'917', u'918',
u'919'],
dtype='object', length=919)

这表示列是字符串。


考虑以下对象

idx = pd.RangeIndex(0, 5)
col = idx.astype(str)
resultp = pd.DataFrame(np.random.rand(5, 5), idx, col)
normal_row = pd.Series(np.random.rand(5), resultp.index)

请注意,col 看起来与 idx 相同,但类型为 str

print(resultp)

0 1 2 3 4
0 0.242878 0.995860 0.486782 0.601954 0.500455
1 0.015091 0.173417 0.508923 0.152233 0.673011
2 0.022210 0.842158 0.302539 0.408297 0.983856
3 0.978881 0.760028 0.254995 0.610134 0.247800
4 0.233714 0.401079 0.984682 0.354219 0.816966

print(normal_row)

0 0.778379
1 0.019352
2 0.583937
3 0.227633
4 0.646096
dtype: float64

因为 resultp.columns 是字符串,所以这个乘法返回为 NaNs

resultp.mul(normal_row, axis=1)

0 1 2 3 4 0 1 2 3 4
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

您需要将 resultp.columns 转换为 int

resultp.columns = resultp.columns.astype(int)

然后相乘

resultp.mul(normal_row, axis=1)

0 1 2 3 4
0 0.305954 0.079327 0.351183 0.588635 0.209578
1 0.136023 0.152232 0.443796 0.493444 0.678651
2 0.411359 0.267142 0.202791 0.327760 0.307422
3 0.399191 0.225889 0.130076 0.147862 0.038032
4 0.039647 0.058929 0.358210 0.684927 0.180250

关于python - Pandas 更改索引数据类型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41729016/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com