以下Python 2.7代码给出了错误:
beta=0.5
from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
print "Y_Train data: ",y_train
print "X_Train data: ",X_train
nb.fit(X_train,y_train)
nb.fit(X_train,y_train)
Traceback (most recent call last):
File "<ipython-input-116-c1ccb2227816>", line 1, in <module>
nb.fit(X_train,y_train)
File "C:\Anaconda3\envs\py27\lib\site-packages\sklearn\naive_bayes.py", line
173, in fit
X, y = check_X_y(X, y)
File "C:\Anaconda3\envs\py27\lib\site-packages\sklearn\utils\validation.py",
line 510, in check_X_y
ensure_min_features, warn_on_dtype, estimator)
File "C:\Anaconda3\envs\py27\lib\site-packages\sklearn\utils\validation.py",
line 393, in check_array
array = array.astype(np.float64)
TypeError: float() argument must be a string or a number
print train.dtypes
id int64
时间戳记datetime64 [ns]
full_sq float64
product_type int64
子区域int64
area_m float64
raion_popul int64
green_zone_part float64
indust_part float64
children_preschool int64
preschool_education_centers_raion int64
children_school int64
school_education_centers_raion int64
school_education_centers_top_20_raion float64
Healthcare_centers_raion int64
university_top_20_raion float64
sport_objects_raion float64
Additional_education_raion float64
culture_objects_top_25 int64
culture_objects_top_25_raion float64
shopping_centers_raion float64
office_raion float64
Thermal_power_plant_raion int64
incineration_raion int64
oil_chemistry_raion int64
radiation_raion int64
railroad_terminal_raion int64
big_market_raion int64
nuclear_reactor_raion int64
detention_facility_raion int64
full_all float64
male_f float64
female_f float64
young_all int64
young_male int64
young_female int64
work_all int64
work_male int64
work_female int64
ekder_all int64
ekder_male int64
ekder_female int64
0_6_all int64
0_6_male int64
0_6_female int64
7_14_all int64
7_14_male int64
7_14_female int64
0_17_all int64
0_17_male int64
0_17_female int64
16_29_all float64
16_29_male float64
16_29_female float64
0_13_all int64
0_13_male int64
0_13_female int64
ID_metro int64
metro_min_avto float64
metro_km_avto float64
幼儿园_公里float64
school_km float64
park_km float64
green_zone_km float64
industrial_km float64
water_treatment_km float64
cemetery_km float64
incineration_km float64
railroad_station_avto_km float64
railroad_station_avto_min float64
ID_railroad_station_avto int64
public_transport_station_km float64
public_transport_station_min_walk float64
water_km float64
water_1line int64
mkad_km float64
ttk_km float64
sadovoe_km float64
bulvar_ring_km float64
克里姆林宫_公里float64
big_road1_km float64
ID_big_road1 int64
big_road1_1line int64
big_road2_km float64
ID_big_road2 int64
railroad_km float64
railroad_1line int64
zd_vokzaly_avto_km float64
ID_railroad_terminal int64
bus_terminal_avto_km float64
ID_bus_terminal int64
oil_chemistry_km float64
nuclear_reactor_km float64
radiation_km float64
power_transmission_line_km float64
Thermal_power_plant_km float64
ts_km float64
big_market_km float64
market_shop_km float64
Fitness_km float64
swim_pool_km float64
ice_rink_km float64
Stadium_km float64
篮球_公里float64
hospice_morgue_km float64
detention_facility_km float64
public_healthcare_km float64
university_km float64
workshops_km float64
shopping_centers_km float64
office_km float64
Additional_education_km float64
preschool_km float64
big_church_km float64
church_synagogue_km float64
mosque_km float64
theatre_km float64
museum_km float64
Exhibition_km float64
catering_km float64
生态学
green_part_500 float64
prom_part_500 float64
office_count_500 float64
office_sqm_500 float64
trc_count_500 float64
trc_sqm_500 float64
cafe_count_500 float64
cafe_count_500_na_price float64
cafe_count_500_price_500 float64
cafe_count_500_price_1000 float64
cafe_count_500_price_1500 float64
cafe_count_500_price_2500 float64
cafe_count_500_price_4000 float64
cafe_count_500_price_high float64
big_church_count_500 float64
church_count_500 float64
mosque_count_500 float64
leisure_count_500 float64
sport_count_500 float64
market_count_500 float64
green_part_1000 float64
prom_part_1000 float64
office_count_1000 float64
office_sqm_1000 float64
trc_count_1000 float64
trc_sqm_1000 float64
cafe_count_1000 float64
cafe_count_1000_na_price float64
cafe_count_1000_price_500 float64
cafe_count_1000_price_1000 float64
cafe_count_1000_price_1500 float64
cafe_count_1000_price_2500 float64
cafe_count_1000_price_4000 float64
cafe_count_1000_price_high float64
big_church_count_1000 float64
church_count_1000 float64
mosque_count_1000 float64
leisure_count_1000 float64
sport_count_1000 float64
market_count_1000 float64
green_part_1500 float64
prom_part_1500 float64
office_count_1500 float64
office_sqm_1500 float64
trc_count_1500 float64
trc_sqm_1500 float64
cafe_count_1500 float64
cafe_count_1500_na_price float64
cafe_count_1500_price_500 float64
cafe_count_1500_price_1000 float64
cafe_count_1500_price_1500 float64
cafe_count_1500_price_2500 float64
cafe_count_1500_price_4000 float64
cafe_count_1500_price_high float64
big_church_count_1500 float64
church_count_1500 float64
mosque_count_1500 float64
leisure_count_1500 float64
sport_count_1500 float64
market_count_1500 float64
green_part_2000 float64
prom_part_2000 float64
office_count_2000 float64
office_sqm_2000 float64
trc_count_2000 float64
trc_sqm_2000 float64
cafe_count_2000 float64
cafe_count_2000_na_price float64
cafe_count_2000_price_500 float64
cafe_count_2000_price_1000 float64
cafe_count_2000_price_1500 float64
cafe_count_2000_price_2500 float64
cafe_count_2000_price_4000 float64
cafe_count_2000_price_high float64
big_church_count_2000 float64
church_count_2000 float64
mosque_count_2000 float64
leisure_count_2000 float64
sport_count_2000 float64
market_count_2000 float64
green_part_3000 float64
prom_part_3000 float64
office_count_3000 float64
office_sqm_3000 float64
trc_count_3000 float64
trc_sqm_3000 float64
cafe_count_3000 float64
cafe_count_3000_na_price float64
cafe_count_3000_price_500 float64
cafe_count_3000_price_1000 float64
cafe_count_3000_price_1500 float64
cafe_count_3000_price_2500 float64
cafe_count_3000_price_4000 float64
cafe_count_3000_price_high float64
big_church_count_3000 float64
church_count_3000 float64
mosque_count_3000 float64
leisure_count_3000 float64
sport_count_3000 float64
market_count_3000 int64
green_part_5000 float64
office_count_5000 float64
office_sqm_5000 float64
trc_count_5000 int64
trc_sqm_5000 int64
cafe_count_5000 float64
cafe_count_5000_na_price float64
cafe_count_5000_price_500 float64
cafe_count_5000_price_1000 float64
cafe_count_5000_price_1500 float64
cafe_count_5000_price_2500 float64
cafe_count_5000_price_4000 float64
cafe_count_5000_price_high float64
big_church_count_5000 float64
church_count_5000 float64
mosque_count_5000 int64
leisure_count_5000 float64
sport_count_5000 int64
market_count_5000 int64
price_doc float64
以上是其数据类型的列。
为什么您认为我会收到此错误?
预先感谢您的回答。
我是一名优秀的程序员,十分优秀!