gpt4 book ai didi

python - 如何在队列中解码 Tensorflow 中的 pfm 文件?

转载 作者:太空宇宙 更新时间:2023-11-04 04:58:15 31 4
gpt4 key购买 nike

我制作了一个文件名队列,这些文件是 *.pfm 文件。然后我编写了一个转换函数readPFM() 将*.pfm 文件转换为ndarray。

我想做的是,当一个文件从队列中出队时,我将使用该函数将其转换为 numpy ndarray。然后它将被输入到图表中。但是代码不起作用。

def disparity(batch_size, path, LR, epochs=2):
filenames = file_name(path, LR, 'pfm')
filenames = sorted(filenames)

filename_queue = tf.train.string_input_producer(filenames, shuffle=False, num_epochs=epochs)
reader = tf.WholeFileReader()
key, img_bytes = reader.read(filename_queue)
disparity, _ = readPFM(img_bytes)

return tf.train.batch([disparity], batch_size, dynamic_pad=True)

pfm文件读取函数在这里。

def readPFM(file):
file = open(file, 'rb')

color = None
width = None
height = None
scale = None
endian = None

header = file.readline().rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')

dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')

scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian

data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)

data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale


def writePFM(file, image, scale=1):
file = open(file, 'wb')

color = None

if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')

image = np.flipud(image)

if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')

file.write('PF\n' if color else 'Pf\n')
file.write('%d %d\n' % (image.shape[1], image.shape[0]))

endian = image.dtype.byteorder

if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale

file.write('%f\n' % scale)

image.tofile(file)

错误消息显示我的函数无法处理张量,因为它只能处理 *.pfm 文件。

有什么解决办法吗?

最佳答案

您不能像在 tensorflow 中那样使用 readPFM 函数,您需要用 tf.py_func 将其包装起来。

# helper function
def decode_pfm(path):
data, _ = load_pfm(open(path, 'rb'))

# http://netpbm.sourceforge.net/doc/pfm.html
# pfm stores the data bottom-to-top, need to reverse
data = np.flipud(data)
data = np.expand_dims(data, 2)
return data

def read_and_decode(path):
image_decoded = tf.py_func(decode_pfm, [path], tf.float32)

# py_func does not set the shape, you might need to explictly
# set it
image_decoded.set_shape((H, W, channels))

关于python - 如何在队列中解码 Tensorflow 中的 pfm 文件?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46513159/

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com