- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试通过使用 Circles(标签:“1”)在黑白图像上训练 AlexNet 来学习 Caffe,并且 Rectangles(标签:“0”)。我正在使用 1800 个训练图像(900 个圆和 900 个矩形)。例如:
我的 train_val.prototxt 看起来像这样:
name: "AlexNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
data_param {
source: "newlmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
data_param {
source: "newvallmdb"
batch_size: 50
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride:
2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
我的 solver.prototxt 看起来像这样:
net: "train_val.prototxt"
test_iter: 200
test_interval: 200
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 50
display: 20
max_iter: 500
momentum: 0.9
weight_decay: 0.0005
snapshot: 100
snapshot_prefix: "training"
solver_mode: GPU
虽然训练我得到这个输出:
I1018 10:13:04.936286 7404 solver.cpp:330] Iteration 0, Testing net (#0)
I1018 10:13:06.262091 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:07.556700 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:11.440527 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:12.267205 7404 solver.cpp:397] Test net output #0: accuracy = 0.94
I1018 10:13:12.267205 7404 solver.cpp:397] Test net output #1: loss = 0.104804 (* 1 = 0.104804 loss)
I1018 10:13:12.594758 7404 solver.cpp:218] Iteration 0 (-9.63533e-42 iter/s, 7.69215s/20 iters), loss = 0.873365
I1018 10:13:12.594758 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:12.594758 7404 sgd_solver.cpp:105] Iteration 0, lr = 0.01
I1018 10:13:15.807883 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:17.305263 7404 solver.cpp:218] Iteration 20 (4.25024 iter/s, 4.70562s/20 iters), loss = 0.873365
I1018 10:13:17.305263 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:17.305263 7404 sgd_solver.cpp:105] Iteration 20, lr = 0.01
I1018 10:13:20.019263 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:21.984572 7404 solver.cpp:218] Iteration 40 (4.26967 iter/s, 4.6842s/20 iters), loss = 0.873365
I1018 10:13:21.984572 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:21.984572 7404 sgd_solver.cpp:105] Iteration 40, lr = 0.01
I1018 10:13:24.246239 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:26.695078 7404 solver.cpp:218] Iteration 60 (4.25863 iter/s, 4.69634s/20 iters), loss = 0.873365
I1018 10:13:26.695078 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:26.695078 7404 sgd_solver.cpp:105] Iteration 60, lr = 0.001
I1018 10:13:28.426422 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:31.421181 7404 solver.cpp:218] Iteration 80 (4.22339 iter/s, 4.73554s/20 iters), loss = 0.873365
I1018 10:13:31.421181 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:31.421181 7404 sgd_solver.cpp:105] Iteration 80, lr = 0.001
I1018 10:13:32.731387 7748 data_layer.cpp:73] Restarting data prefetching from start.
[I 10:13:32.934 NotebookApp] Saving file at /Untitled2.ipynb
I1018 10:13:35.788537 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_100.caffemodel
I1018 10:13:37.317111 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_100.solverstate
I1018 10:13:38.081399 7404 solver.cpp:218] Iteration 100 (3.00631 iter/s, 6.65267s/20 iters), loss = 0
I1018 10:13:38.081399 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:38.081399 7404 sgd_solver.cpp:105] Iteration 100, lr = 0.0001
I1018 10:13:38.908077 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:42.791904 7404 solver.cpp:218] Iteration 120 (4.23481 iter/s, 4.72276s/20 iters), loss = 0
I1018 10:13:42.807502 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:42.807502 7404 sgd_solver.cpp:105] Iteration 120, lr = 0.0001
I1018 10:13:43.088260 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:47.393225 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:47.549202 7404 solver.cpp:218] Iteration 140 (4.21716 iter/s, 4.74253s/20 iters), loss = 0
I1018 10:13:47.549202 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:47.549202 7404 sgd_solver.cpp:105] Iteration 140, lr = 0.0001
I1018 10:13:51.635800 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:52.290904 7404 solver.cpp:218] Iteration 160 (4.21268 iter/s, 4.74757s/20 iters), loss = 0
I1018 10:13:52.290904 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:52.290904 7404 sgd_solver.cpp:105] Iteration 160, lr = 1e-05
I1018 10:13:56.003156 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:57.048202 7404 solver.cpp:218] Iteration 180 (4.20926 iter/s, 4.75142s/20 iters), loss = 0.873365
I1018 10:13:57.048202 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:57.048202 7404 sgd_solver.cpp:105] Iteration 180, lr = 1e-05
I1018 10:14:00.214535 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:01.431155 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_200.caffemodel
I1018 10:14:03.053316 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_200.solverstate
I1018 10:14:03.552443 7404 solver.cpp:330] Iteration 200, Testing net (#0)
I1018 10:14:04.082764 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:05.439764 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:10.727385 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:10.789775 7404 blocking_queue.cpp:49] Waiting for data
I1018 10:14:10.961350 7404 solver.cpp:397] Test net output #0: accuracy = 0.94
I1018 10:14:10.961350 7404 solver.cpp:397] Test net output #1: loss = 0.104804 (* 1 = 0.104804 loss)
I1018 10:14:11.179718 7404 solver.cpp:218] Iteration 200 (1.41459 iter/s, 14.1384s/20 iters), loss = 0.873365
I1018 10:14:11.179718 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:11.179718 7404 sgd_solver.cpp:105] Iteration 200, lr = 1e-06
I1018 10:14:13.846925 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:15.952615 7404 solver.cpp:218] Iteration 220 (4.19673 iter/s, 4.76562s/20 iters), loss = 0.873365
I1018 10:14:15.952615 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:15.952615 7404 sgd_solver.cpp:105] Iteration 220, lr = 1e-06
I1018 10:14:18.198683 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:20.709913 7404 solver.cpp:218] Iteration 240 (4.19817 iter/s, 4.76398s/20 iters), loss = 0.873365
I1018 10:14:20.709913 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:20.709913 7404 sgd_solver.cpp:105] Iteration 240, lr = 1e-06
I1018 10:14:22.441257 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:25.498407 7404 solver.cpp:218] Iteration 260 (4.18243 iter/s, 4.78191s/20 iters), loss = 0.873365
I1018 10:14:25.498407 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:25.498407 7404 sgd_solver.cpp:105] Iteration 260, lr = 1e-07
I1018 10:14:26.761821 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:30.271303 7404 solver.cpp:218] Iteration 280 (4.18629 iter/s, 4.7775s/20 iters), loss = 0
I1018 10:14:30.271303 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:30.271303 7404 sgd_solver.cpp:105] Iteration 280, lr = 1e-07
I1018 10:14:31.129176 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:34.701050 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_300.caffemodel
I1018 10:14:36.136039 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_300.solverstate
I1018 10:14:36.931521 7404 solver.cpp:218] Iteration 300 (3.00228 iter/s, 6.66161s/20 iters), loss = 0
I1018 10:14:36.931521 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:36.931521 7404 sgd_solver.cpp:105] Iteration 300, lr = 1e-08
I1018 10:14:37.337061 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:41.595233 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:41.688819 7404 solver.cpp:218] Iteration 320 (4.20513 iter/s, 4.7561s/20 iters), loss = 0
I1018 10:14:41.688819 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:41.688819 7404 sgd_solver.cpp:105] Iteration 320, lr = 1e-08
I1018 10:14:45.884600 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:46.461715 7404 solver.cpp:218] Iteration 340 (4.19496 iter/s, 4.76763s/20 iters), loss = 0
I1018 10:14:46.461715 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:46.461715 7404 sgd_solver.cpp:105] Iteration 340, lr = 1e-08
I1018 10:14:50.111598 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:51.234639 7404 solver.cpp:218] Iteration 360 (4.1858 iter/s, 4.77806s/20 iters), loss = 0.873365
I1018 10:14:51.234639 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:51.234639 7404 sgd_solver.cpp:105] Iteration 360, lr = 1e-09
I1018 10:14:54.478982 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:56.007566 7404 solver.cpp:218] Iteration 380 (4.19437 iter/s, 4.76829s/20 iters), loss = 0.873365
I1018 10:14:56.007566 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:56.007566 7404 sgd_solver.cpp:105] Iteration 380, lr = 1e-09
I1018 10:14:58.705986 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:00.421743 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_400.caffemodel
I1018 10:15:01.903534 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_400.solverstate
I1018 10:15:02.371469 7404 solver.cpp:330] Iteration 400, Testing net (#0)
I1018 10:15:03.478912 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:04.820323 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:06.146136 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:07.471949 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:08.813360 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:09.796021 7404 solver.cpp:397] Test net output #0: accuracy = 0.95
I1018 10:15:09.796021 7404 solver.cpp:397] Test net output #1: loss = 0.0873365 (* 1 = 0.0873365 loss)
I1018 10:15:10.014390 7404 solver.cpp:218] Iteration 400 (1.4278 iter/s, 14.0076s/20 iters), loss = 0.873365
I1018 10:15:10.014390 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:15:10.014390 7404 sgd_solver.cpp:105] Iteration 400, lr = 1e-10
I1018 10:15:12.291669 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:14.787317 7404 solver.cpp:218] Iteration 420 (4.18883 iter/s, 4.7746s/20 iters), loss = 0.873365
I1018 10:15:14.787317 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:15:14.787317 7404 sgd_solver.cpp:105] Iteration 420, lr = 1e-10
I1018 10:15:16.582064 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:19.545646 7404 solver.cpp:218] Iteration 440 (4.20273 iter/s, 4.75881s/20 iters), loss = 0.873365
I1018 10:15:19.545646 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:15:19.545646 7404 sgd_solver.cpp:105] Iteration 440, lr = 1e-10
I1018 10:15:20.824666 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:24.334172 7404 solver.cpp:218] Iteration 460 (4.18022 iter/s, 4.78443s/20 iters), loss = 0
I1018 10:15:24.334172 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:15:24.334172 7404 sgd_solver.cpp:105] Iteration 460, lr = 1e-11
I1018 10:15:25.114061 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:29.107098 7404 solver.cpp:218] Iteration 480 (4.18678 iter/s, 4.77694s/20 iters), loss = 0
I1018 10:15:29.107098 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:15:29.107098 7404 sgd_solver.cpp:105] Iteration 480, lr = 1e-11
I1018 10:15:29.497043 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:33.505677 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_500.caffemodel
I1018 10:15:35.112251 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_500.solverstate
I1018 10:15:35.751760 7404 solver.cpp:310] Iteration 500, loss = 0
I1018 10:15:35.751760 7404 solver.cpp:315] Optimization Done.
如您所见,损失是常量 0.873365 或 0,我不知道为什么。当我使用以下代码测试图像时,我总是返回零:
img = caffe.io.load_image('val/img911.png', color=False)
grayimg = img[:,:,0]
gi = np.reshape(grayimg, (260,260,1))
net = caffe.Net('deploy.prototxt',
'training_iter_500.caffemodel',
caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_raw_scale('data', 255.0)
net.blobs['data'].reshape(1,1,260,260)
net.blobs['data'].data[...] = transformer.preprocess('data', gi)
out = net.forward()
print out['prob'].argmax()
为了创建 LMDB 文件,我使用了这个脚本:
import numpy as np
import lmdb
import caffe
import cv2
N = 1800
X = np.zeros((N, 1, 260, 260), dtype=np.uint8)
y = np.zeros(N, dtype=np.int64)
map_size = X.nbytes * 10
file = open("train.txt", "r")
files = file.readlines()
print(len(files))
for i in range(0,len(files)):
line = files[i]
img_path = line.split()[0]
label = line.split()[1]
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
X[i]=img
env = lmdb.open('newlmdb', map_size=map_size)
with env.begin(write=True) as txn:
# txn is a Transaction object
for i in range(N):
datum = caffe.proto.caffe_pb2.Datum()
datum.channels = X.shape[1]
datum.height = X.shape[2]
datum.width = X.shape[3]
datum.data = X[i].tobytes() # or .tostring() if numpy < 1.9
datum.label = int(y[i])
y[i]=label
这是我的代码错误还是我选择的网络参数太差了?
我编辑了我的数据层以获得零均值输入:
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 260
mean_file: "formen_mean.binaryproto"
}
data_param {
source: "newlmdb"
batch_size: 10
backend: LMDB
}
}
将训练图像的数量增加到 10000,将测试图像的数量增加到 1000,打乱我的数据并编辑我的 solver.prototxt:
net: "train_val.prototxt"
test_iter: 20
test_interval: 50
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 50
display: 20
max_iter: 1000
momentum: 0.9
weight_decay: 0.0005
snapshot: 200
debug_info: true
snapshot_prefix: "training"
solver_mode: GPU
在调试信息中的某个时刻,发生了以下情况:
I1018 14:21:16.238169 5540 net.cpp:619] [Backward] Layer drop6, bottom blob fc6 diff: 2.64904e-05
I1018 14:21:16.238169 5540 net.cpp:619] [Backward] Layer relu6, bottom blob fc6 diff: 1.33896e-05
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer fc6, bottom blob pool2 diff: 8.48778e-06
I1018 14:21:16.269316 5540 net.cpp:630] [Backward] Layer fc6, param blob 0 diff: 0.000181272
I1018 14:21:16.269316 5540 net.cpp:630] [Backward] Layer fc6, param blob 1 diff: 0.000133896
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer pool2, bottom blob norm2 diff: 1.82455e-06
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer norm2, bottom blob conv2 diff: 1.82354e-06
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer relu2, bottom blob conv2 diff: 1.41858e-06
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer conv2, bottom blob pool1 diff: 1.989e-06
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv2, param blob 0 diff: 0.00600851
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv2, param blob 1 diff: 0.00107259
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer pool1, bottom blob norm1 diff: 4.57322e-07
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer norm1, bottom blob conv1 diff: 4.54691e-07
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer relu1, bottom blob conv1 diff: 2.18649e-07
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv1, param blob 0 diff: 0.0333731
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv1, param blob 1 diff: 0.000384605
E1018 14:21:16.331610 5540 net.cpp:719] [Backward] All net params (data, diff): L1 norm = (1.0116e+06, 55724.3); L2 norm = (80.218, 24.0218)
I1018 14:21:16.331610 5540 solver.cpp:218] Iteration 0 (0 iter/s, 1.69776s/20 iters), loss = 8.73365
I1018 14:21:16.331610 5540 solver.cpp:237] Train net output #0: loss = 8.73365 (* 1 = 8.73365 loss)
I1018 14:21:16.331610 5540 sgd_solver.cpp:105] Iteration 0, lr = 0.01
I1018 14:21:19.726611 5540 net.cpp:591] [Forward] Layer data, top blob data data: 44.8563
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer data, top blob label data: 1
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer conv1, top blob conv1 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv1, param blob 0 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv1, param blob 1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer relu1, top blob conv1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer norm1, top blob norm1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer pool1, top blob pool1 data: inf
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer conv2, top blob conv2 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv2, param blob 0 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv2, param blob 1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer relu2, top blob conv2 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer norm2, top blob norm2 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer pool2, top blob pool2 data: inf
所以我将 base_lr 减少到 0.0001。但在稍后的某个时刻,梯度下降到零:
I1018 14:24:40.919765 5500 net.cpp:591] [Forward] Layer loss, top blob loss data: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer loss, bottom blob fc8 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer fc8, bottom blob fc7 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc8, param blob 0 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc8, param blob 1 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer drop7, bottom blob fc7 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer relu7, bottom blob fc7 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer fc7, bottom blob fc6 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc7, param blob 0 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc7, param blob 1 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer drop6, bottom blob fc6 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer relu6, bottom blob fc6 diff: 0
I1018 14:24:40.936337 5500 net.cpp:619] [Backward] Layer fc6, bottom blob pool2 diff: 0
I1018 14:24:40.936337 5500 net.cpp:630] [Backward] Layer fc6, param blob 0 diff: 0
I1018 14:24:40.936337 5500 net.cpp:630] [Backward] Layer fc6, param blob 1 diff: 0
I1018 14:24:40.936337 5500 net.cpp:619] [Backward] Layer pool2, bottom blob norm2 diff: 0
I1018 14:24:40.951910 5500 net.cpp:619] [Backward] Layer norm2, bottom blob conv2 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer relu2, bottom blob conv2 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer conv2, bottom blob pool1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:630] [Backward] Layer conv2, param blob 0 diff: 0
I1018 14:24:40.967483 5500 net.cpp:630] [Backward] Layer conv2, param blob 1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer pool1, bottom blob norm1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer norm1, bottom blob conv1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer relu1, bottom blob conv1 diff: 0
最佳答案
不知道你的网为什么不学习。但您可能需要考虑以下几点:
batch_size
为 50,test_iter
为 200,这意味着您正在验证 50*200=10,000
示例。由于总共只有 1,800 个示例 - 这个大的 test_iter
值是什么意思?“ReLU”
实际上是不活跃的)。 关于python - Caffe Net 不训练(训练时损失不会改变),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46806112/
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!