gpt4 book ai didi

python - Caffe Net 不训练(训练时损失不会改变)

转载 作者:太空宇宙 更新时间:2023-11-04 04:57:05 26 4
gpt4 key购买 nike

我正在尝试通过使用 Circles(标签:“1”)在黑白图像上训练 AlexNet 来学习 Caffe,并且 Rectangles(标签:“0”)。我正在使用 1800 个训练图像(900 个圆和 900 个矩形)。例如:

我的 train_val.prototxt 看起来像这样:

name: "AlexNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
data_param {
source: "newlmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
data_param {
source: "newvallmdb"
batch_size: 50
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}

layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride:

2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}

我的 solver.prototxt 看起来像这样:

net: "train_val.prototxt"
test_iter: 200
test_interval: 200
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 50
display: 20
max_iter: 500
momentum: 0.9
weight_decay: 0.0005
snapshot: 100
snapshot_prefix: "training"
solver_mode: GPU

虽然训练我得到这个输出:

I1018 10:13:04.936286  7404 solver.cpp:330] Iteration 0, Testing net (#0)
I1018 10:13:06.262091 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:07.556700 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:11.440527 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:12.267205 7404 solver.cpp:397] Test net output #0: accuracy = 0.94
I1018 10:13:12.267205 7404 solver.cpp:397] Test net output #1: loss = 0.104804 (* 1 = 0.104804 loss)
I1018 10:13:12.594758 7404 solver.cpp:218] Iteration 0 (-9.63533e-42 iter/s, 7.69215s/20 iters), loss = 0.873365
I1018 10:13:12.594758 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:12.594758 7404 sgd_solver.cpp:105] Iteration 0, lr = 0.01
I1018 10:13:15.807883 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:17.305263 7404 solver.cpp:218] Iteration 20 (4.25024 iter/s, 4.70562s/20 iters), loss = 0.873365
I1018 10:13:17.305263 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:17.305263 7404 sgd_solver.cpp:105] Iteration 20, lr = 0.01
I1018 10:13:20.019263 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:21.984572 7404 solver.cpp:218] Iteration 40 (4.26967 iter/s, 4.6842s/20 iters), loss = 0.873365
I1018 10:13:21.984572 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:21.984572 7404 sgd_solver.cpp:105] Iteration 40, lr = 0.01
I1018 10:13:24.246239 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:26.695078 7404 solver.cpp:218] Iteration 60 (4.25863 iter/s, 4.69634s/20 iters), loss = 0.873365
I1018 10:13:26.695078 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:26.695078 7404 sgd_solver.cpp:105] Iteration 60, lr = 0.001
I1018 10:13:28.426422 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:31.421181 7404 solver.cpp:218] Iteration 80 (4.22339 iter/s, 4.73554s/20 iters), loss = 0.873365
I1018 10:13:31.421181 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:31.421181 7404 sgd_solver.cpp:105] Iteration 80, lr = 0.001
I1018 10:13:32.731387 7748 data_layer.cpp:73] Restarting data prefetching from start.
[I 10:13:32.934 NotebookApp] Saving file at /Untitled2.ipynb
I1018 10:13:35.788537 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_100.caffemodel
I1018 10:13:37.317111 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_100.solverstate
I1018 10:13:38.081399 7404 solver.cpp:218] Iteration 100 (3.00631 iter/s, 6.65267s/20 iters), loss = 0
I1018 10:13:38.081399 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:38.081399 7404 sgd_solver.cpp:105] Iteration 100, lr = 0.0001
I1018 10:13:38.908077 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:42.791904 7404 solver.cpp:218] Iteration 120 (4.23481 iter/s, 4.72276s/20 iters), loss = 0
I1018 10:13:42.807502 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:42.807502 7404 sgd_solver.cpp:105] Iteration 120, lr = 0.0001
I1018 10:13:43.088260 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:47.393225 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:47.549202 7404 solver.cpp:218] Iteration 140 (4.21716 iter/s, 4.74253s/20 iters), loss = 0
I1018 10:13:47.549202 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:47.549202 7404 sgd_solver.cpp:105] Iteration 140, lr = 0.0001
I1018 10:13:51.635800 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:52.290904 7404 solver.cpp:218] Iteration 160 (4.21268 iter/s, 4.74757s/20 iters), loss = 0
I1018 10:13:52.290904 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:13:52.290904 7404 sgd_solver.cpp:105] Iteration 160, lr = 1e-05
I1018 10:13:56.003156 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:13:57.048202 7404 solver.cpp:218] Iteration 180 (4.20926 iter/s, 4.75142s/20 iters), loss = 0.873365
I1018 10:13:57.048202 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:13:57.048202 7404 sgd_solver.cpp:105] Iteration 180, lr = 1e-05
I1018 10:14:00.214535 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:01.431155 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_200.caffemodel
I1018 10:14:03.053316 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_200.solverstate
I1018 10:14:03.552443 7404 solver.cpp:330] Iteration 200, Testing net (#0)
I1018 10:14:04.082764 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:05.439764 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:10.727385 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:10.789775 7404 blocking_queue.cpp:49] Waiting for data
I1018 10:14:10.961350 7404 solver.cpp:397] Test net output #0: accuracy = 0.94
I1018 10:14:10.961350 7404 solver.cpp:397] Test net output #1: loss = 0.104804 (* 1 = 0.104804 loss)
I1018 10:14:11.179718 7404 solver.cpp:218] Iteration 200 (1.41459 iter/s, 14.1384s/20 iters), loss = 0.873365
I1018 10:14:11.179718 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:11.179718 7404 sgd_solver.cpp:105] Iteration 200, lr = 1e-06
I1018 10:14:13.846925 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:15.952615 7404 solver.cpp:218] Iteration 220 (4.19673 iter/s, 4.76562s/20 iters), loss = 0.873365
I1018 10:14:15.952615 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:15.952615 7404 sgd_solver.cpp:105] Iteration 220, lr = 1e-06
I1018 10:14:18.198683 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:20.709913 7404 solver.cpp:218] Iteration 240 (4.19817 iter/s, 4.76398s/20 iters), loss = 0.873365
I1018 10:14:20.709913 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:20.709913 7404 sgd_solver.cpp:105] Iteration 240, lr = 1e-06
I1018 10:14:22.441257 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:25.498407 7404 solver.cpp:218] Iteration 260 (4.18243 iter/s, 4.78191s/20 iters), loss = 0.873365
I1018 10:14:25.498407 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:25.498407 7404 sgd_solver.cpp:105] Iteration 260, lr = 1e-07
I1018 10:14:26.761821 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:30.271303 7404 solver.cpp:218] Iteration 280 (4.18629 iter/s, 4.7775s/20 iters), loss = 0
I1018 10:14:30.271303 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:30.271303 7404 sgd_solver.cpp:105] Iteration 280, lr = 1e-07
I1018 10:14:31.129176 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:34.701050 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_300.caffemodel
I1018 10:14:36.136039 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_300.solverstate
I1018 10:14:36.931521 7404 solver.cpp:218] Iteration 300 (3.00228 iter/s, 6.66161s/20 iters), loss = 0
I1018 10:14:36.931521 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:36.931521 7404 sgd_solver.cpp:105] Iteration 300, lr = 1e-08
I1018 10:14:37.337061 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:41.595233 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:41.688819 7404 solver.cpp:218] Iteration 320 (4.20513 iter/s, 4.7561s/20 iters), loss = 0
I1018 10:14:41.688819 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:41.688819 7404 sgd_solver.cpp:105] Iteration 320, lr = 1e-08
I1018 10:14:45.884600 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:46.461715 7404 solver.cpp:218] Iteration 340 (4.19496 iter/s, 4.76763s/20 iters), loss = 0
I1018 10:14:46.461715 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:14:46.461715 7404 sgd_solver.cpp:105] Iteration 340, lr = 1e-08
I1018 10:14:50.111598 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:51.234639 7404 solver.cpp:218] Iteration 360 (4.1858 iter/s, 4.77806s/20 iters), loss = 0.873365
I1018 10:14:51.234639 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:51.234639 7404 sgd_solver.cpp:105] Iteration 360, lr = 1e-09
I1018 10:14:54.478982 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:14:56.007566 7404 solver.cpp:218] Iteration 380 (4.19437 iter/s, 4.76829s/20 iters), loss = 0.873365
I1018 10:14:56.007566 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:14:56.007566 7404 sgd_solver.cpp:105] Iteration 380, lr = 1e-09
I1018 10:14:58.705986 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:00.421743 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_400.caffemodel
I1018 10:15:01.903534 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_400.solverstate
I1018 10:15:02.371469 7404 solver.cpp:330] Iteration 400, Testing net (#0)
I1018 10:15:03.478912 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:04.820323 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:06.146136 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:07.471949 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:08.813360 7792 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:09.796021 7404 solver.cpp:397] Test net output #0: accuracy = 0.95
I1018 10:15:09.796021 7404 solver.cpp:397] Test net output #1: loss = 0.0873365 (* 1 = 0.0873365 loss)
I1018 10:15:10.014390 7404 solver.cpp:218] Iteration 400 (1.4278 iter/s, 14.0076s/20 iters), loss = 0.873365
I1018 10:15:10.014390 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:15:10.014390 7404 sgd_solver.cpp:105] Iteration 400, lr = 1e-10
I1018 10:15:12.291669 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:14.787317 7404 solver.cpp:218] Iteration 420 (4.18883 iter/s, 4.7746s/20 iters), loss = 0.873365
I1018 10:15:14.787317 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:15:14.787317 7404 sgd_solver.cpp:105] Iteration 420, lr = 1e-10
I1018 10:15:16.582064 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:19.545646 7404 solver.cpp:218] Iteration 440 (4.20273 iter/s, 4.75881s/20 iters), loss = 0.873365
I1018 10:15:19.545646 7404 solver.cpp:237] Train net output #0: loss = 0.873365 (* 1 = 0.873365 loss)
I1018 10:15:19.545646 7404 sgd_solver.cpp:105] Iteration 440, lr = 1e-10
I1018 10:15:20.824666 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:24.334172 7404 solver.cpp:218] Iteration 460 (4.18022 iter/s, 4.78443s/20 iters), loss = 0
I1018 10:15:24.334172 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:15:24.334172 7404 sgd_solver.cpp:105] Iteration 460, lr = 1e-11
I1018 10:15:25.114061 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:29.107098 7404 solver.cpp:218] Iteration 480 (4.18678 iter/s, 4.77694s/20 iters), loss = 0
I1018 10:15:29.107098 7404 solver.cpp:237] Train net output #0: loss = 0 (* 1 = 0 loss)
I1018 10:15:29.107098 7404 sgd_solver.cpp:105] Iteration 480, lr = 1e-11
I1018 10:15:29.497043 7748 data_layer.cpp:73] Restarting data prefetching from start.
I1018 10:15:33.505677 7404 solver.cpp:447] Snapshotting to binary proto file training_iter_500.caffemodel
I1018 10:15:35.112251 7404 sgd_solver.cpp:273] Snapshotting solver state to binary proto file training_iter_500.solverstate
I1018 10:15:35.751760 7404 solver.cpp:310] Iteration 500, loss = 0
I1018 10:15:35.751760 7404 solver.cpp:315] Optimization Done.

如您所见,损失是常量 0.873365 或 0,我不知道为什么。当我使用以下代码测试图像时,我总是返回零:

img = caffe.io.load_image('val/img911.png', color=False)
grayimg = img[:,:,0]
gi = np.reshape(grayimg, (260,260,1))

net = caffe.Net('deploy.prototxt',
'training_iter_500.caffemodel',
caffe.TEST)

transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_raw_scale('data', 255.0)

net.blobs['data'].reshape(1,1,260,260)
net.blobs['data'].data[...] = transformer.preprocess('data', gi)

out = net.forward()

print out['prob'].argmax()

为了创建 LMDB 文件,我使用了这个脚本:

import numpy as np
import lmdb
import caffe
import cv2

N = 1800

X = np.zeros((N, 1, 260, 260), dtype=np.uint8)
y = np.zeros(N, dtype=np.int64)
map_size = X.nbytes * 10

file = open("train.txt", "r")
files = file.readlines()
print(len(files))

for i in range(0,len(files)):
line = files[i]
img_path = line.split()[0]
label = line.split()[1]
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
X[i]=img

env = lmdb.open('newlmdb', map_size=map_size)

with env.begin(write=True) as txn:
# txn is a Transaction object
for i in range(N):
datum = caffe.proto.caffe_pb2.Datum()
datum.channels = X.shape[1]
datum.height = X.shape[2]
datum.width = X.shape[3]
datum.data = X[i].tobytes() # or .tostring() if numpy < 1.9
datum.label = int(y[i])
y[i]=label

这是我的代码错误还是我选择的网络参数太差了?

编辑

我编辑了我的数据层以获得零均值输入:

layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 260
mean_file: "formen_mean.binaryproto"
}
data_param {
source: "newlmdb"
batch_size: 10
backend: LMDB
}
}

将训练图像的数量增加到 10000,将测试图像的数量增加到 1000,打乱我的数据并编辑我的 solver.prototxt:

net: "train_val.prototxt"
test_iter: 20
test_interval: 50
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 50
display: 20
max_iter: 1000
momentum: 0.9
weight_decay: 0.0005
snapshot: 200
debug_info: true
snapshot_prefix: "training"
solver_mode: GPU

在调试信息中的某个时刻,发生了以下情况:

I1018 14:21:16.238169  5540 net.cpp:619]     [Backward] Layer drop6, bottom blob fc6 diff: 2.64904e-05
I1018 14:21:16.238169 5540 net.cpp:619] [Backward] Layer relu6, bottom blob fc6 diff: 1.33896e-05
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer fc6, bottom blob pool2 diff: 8.48778e-06
I1018 14:21:16.269316 5540 net.cpp:630] [Backward] Layer fc6, param blob 0 diff: 0.000181272
I1018 14:21:16.269316 5540 net.cpp:630] [Backward] Layer fc6, param blob 1 diff: 0.000133896
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer pool2, bottom blob norm2 diff: 1.82455e-06
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer norm2, bottom blob conv2 diff: 1.82354e-06
I1018 14:21:16.269316 5540 net.cpp:619] [Backward] Layer relu2, bottom blob conv2 diff: 1.41858e-06
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer conv2, bottom blob pool1 diff: 1.989e-06
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv2, param blob 0 diff: 0.00600851
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv2, param blob 1 diff: 0.00107259
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer pool1, bottom blob norm1 diff: 4.57322e-07
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer norm1, bottom blob conv1 diff: 4.54691e-07
I1018 14:21:16.284889 5540 net.cpp:619] [Backward] Layer relu1, bottom blob conv1 diff: 2.18649e-07
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv1, param blob 0 diff: 0.0333731
I1018 14:21:16.284889 5540 net.cpp:630] [Backward] Layer conv1, param blob 1 diff: 0.000384605
E1018 14:21:16.331610 5540 net.cpp:719] [Backward] All net params (data, diff): L1 norm = (1.0116e+06, 55724.3); L2 norm = (80.218, 24.0218)
I1018 14:21:16.331610 5540 solver.cpp:218] Iteration 0 (0 iter/s, 1.69776s/20 iters), loss = 8.73365
I1018 14:21:16.331610 5540 solver.cpp:237] Train net output #0: loss = 8.73365 (* 1 = 8.73365 loss)
I1018 14:21:16.331610 5540 sgd_solver.cpp:105] Iteration 0, lr = 0.01
I1018 14:21:19.726611 5540 net.cpp:591] [Forward] Layer data, top blob data data: 44.8563
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer data, top blob label data: 1
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer conv1, top blob conv1 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv1, param blob 0 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv1, param blob 1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer relu1, top blob conv1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer norm1, top blob norm1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer pool1, top blob pool1 data: inf
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer conv2, top blob conv2 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv2, param blob 0 data: nan
I1018 14:21:19.742184 5540 net.cpp:603] [Forward] Layer conv2, param blob 1 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer relu2, top blob conv2 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer norm2, top blob norm2 data: nan
I1018 14:21:19.742184 5540 net.cpp:591] [Forward] Layer pool2, top blob pool2 data: inf

所以我将 base_lr 减少到 0.0001。但在稍后的某个时刻,梯度下降到零:

I1018 14:24:40.919765  5500 net.cpp:591]     [Forward] Layer loss, top blob loss data: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer loss, bottom blob fc8 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer fc8, bottom blob fc7 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc8, param blob 0 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc8, param blob 1 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer drop7, bottom blob fc7 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer relu7, bottom blob fc7 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer fc7, bottom blob fc6 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc7, param blob 0 diff: 0
I1018 14:24:40.919765 5500 net.cpp:630] [Backward] Layer fc7, param blob 1 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer drop6, bottom blob fc6 diff: 0
I1018 14:24:40.919765 5500 net.cpp:619] [Backward] Layer relu6, bottom blob fc6 diff: 0
I1018 14:24:40.936337 5500 net.cpp:619] [Backward] Layer fc6, bottom blob pool2 diff: 0
I1018 14:24:40.936337 5500 net.cpp:630] [Backward] Layer fc6, param blob 0 diff: 0
I1018 14:24:40.936337 5500 net.cpp:630] [Backward] Layer fc6, param blob 1 diff: 0
I1018 14:24:40.936337 5500 net.cpp:619] [Backward] Layer pool2, bottom blob norm2 diff: 0
I1018 14:24:40.951910 5500 net.cpp:619] [Backward] Layer norm2, bottom blob conv2 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer relu2, bottom blob conv2 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer conv2, bottom blob pool1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:630] [Backward] Layer conv2, param blob 0 diff: 0
I1018 14:24:40.967483 5500 net.cpp:630] [Backward] Layer conv2, param blob 1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer pool1, bottom blob norm1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer norm1, bottom blob conv1 diff: 0
I1018 14:24:40.967483 5500 net.cpp:619] [Backward] Layer relu1, bottom blob conv1 diff: 0

最佳答案

不知道你的网为什么不学习。但您可能需要考虑以下几点:

  1. 您的测试阶段:测试 batch_size 为 50,test_iter 为 200,这意味着您正在验证 50*200=10,000 示例。由于总共只有 1,800 个示例 - 这个大的 test_iter 值是什么意思?
    this thread有关此问题的更多信息。
  2. 您似乎“按原样”使用图像,这意味着您的输入值范围是 [0..255]。从网络的输入中减去均值是很常见的,这样您就可以得到零均值的网络输入。
  3. 考虑查看您的培训 debug info : 你的梯度消失了吗?你有没有“活跃”的层(例如,一个所有负值的层上面有一个“ReLU”实际上是不活跃的)。
  4. 获得恒定的损失值表明无论输入如何,您的层都只预测一个标签,请考虑 shuffling你的数据集。

关于python - Caffe Net 不训练(训练时损失不会改变),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46806112/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com