- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在努力用 Cython 提高我的 python 粒子跟踪代码的性能。
这是我的纯 Python 代码:
from scipy.integrate import odeint
import numpy as np
from numpy import sqrt, pi, sin, cos
from time import time as Time
import multiprocessing as mp
from functools import partial
cLight = 299792458.
Dim = 6
class Integrator:
def __init__(self, ring):
self.ring = ring
def equations(self, X, s):
dXds = np.zeros(Dim)
E, B = self.ring.getEMField( [X[0], X[2], s], X[4] )
h = 1 + X[0]/self.ring.ringRadius
p_s = np.sqrt(X[5]**2 - self.ring.particle.mass**2 - X[1]**2 - X[3]**2)
dtds = h*X[5]/p_s
gamma = X[5]/self.ring.particle.mass
beta = np.array( [X[1], X[3], p_s] ) / X[5]
dXds[0] = dtds*beta[0]
dXds[2] = dtds*beta[1]
dXds[1] = p_s/self.ring.ringRadius + self.ring.particle.charge*(dtds*E[0] + dXds[2]*B[2] - h*B[1])
dXds[3] = self.ring.particle.charge*(dtds*E[1] + h*B[0] - dXds[0]*B[2])
dXds[4] = dtds
dXds[5] = self.ring.particle.charge*(dXds[0]*E[0] + dXds[2]*E[1] + h*E[2])
return dXds
def odeSolve(self, X0, sRange):
sol = odeint(self.equations, X0, sRange)
return sol
class Ring:
def __init__(self, particle):
self.particle = particle
self.ringRadius = 7.112
self.magicB0 = self.particle.magicMomentum/self.ringRadius
def getEMField(self, pos, time):
x, y, s = pos
theta = (s/self.ringRadius*180/pi) % 360
r = sqrt(x**2 + y**2)
arg = 0 if r == 0 else np.angle( complex(x/r, y/r) )
rn = r/0.045
k2 = 37*24e3
k10 = -4*24e3
E = np.zeros(3)
B = np.array( [ 0, self.magicB0, 0 ] )
for i in range(4):
if ((21.9+90*i < theta < 34.9+90*i or 38.9+90*i < theta < 64.9+90*i) and (-0.05 < x < 0.05 and -0.05 < y < 0.05)):
E = np.array( [ k2*x/0.045 + k10*rn**9*cos(9*arg), -k2*y/0.045 -k10*rn**9*sin(9*arg), 0] )
break
return E, B
class Particle:
def __init__(self):
self.mass = 105.65837e6
self.charge = 1.
self.gm2 = 0.001165921
self.magicMomentum = self.mass/sqrt(self.gm2)
self.magicEnergy = sqrt(self.magicMomentum**2 + self.mass**2)
self.magicGamma = self.magicEnergy/self.mass
self.magicBeta = self.magicMomentum/(self.magicGamma*self.mass)
def runSimulation(nParticles, tEnd):
particle = Particle()
ring = Ring(particle)
integrator = Integrator(ring)
Xs = np.array( [ np.array( [45e-3*(np.random.rand()-0.5)*2, 0, 0, 0, 0, particle.magicEnergy] ) for i in range(nParticles) ] )
sRange = np.arange(0, tEnd, 1e-9)*particle.magicBeta*cLight
ode = partial(integrator.odeSolve, sRange=sRange)
t1 = Time()
pool = mp.Pool()
sol = np.array(pool.map(ode, Xs))
t2 = Time()
print ("%.3f sec" %(t2-t1))
return t2-t1
显然,最耗时的过程是积分 ODE,在 Integrator 类中定义为 odeSolve() 和 equations()。此外,类 Ring 中的 getEMField() 方法在求解过程中被调用的次数与 equations() 方法一样多。我尝试使用 Cython 获得显着的加速(至少 10 倍~20 倍),但通过以下 Cython 脚本我只获得了 ~1.5 倍的加速:
import cython
import numpy as np
cimport numpy as np
from libc.math cimport sqrt, pi, sin, cos
from scipy.integrate import odeint
from time import time as Time
import multiprocessing as mp
from functools import partial
cdef double cLight = 299792458.
cdef int Dim = 6
@cython.boundscheck(False)
cdef class Integrator:
cdef Ring ring
def __init__(self, ring):
self.ring = ring
cpdef np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] equations(self,
np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] X,
double s):
cdef np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] dXds = np.zeros(Dim)
cdef double h, p_s, dtds, gamma
cdef np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] beta, E, B
E, B = self.ring.getEMField( [X[0], X[2], s], X[4] )
h = 1 + X[0]/self.ring.ringRadius
p_s = np.sqrt(X[5]*X[5] - self.ring.particle.mass*self.ring.particle.mass - X[1]*X[1] - X[3]*X[3])
dtds = h*X[5]/p_s
gamma = X[5]/self.ring.particle.mass
beta = np.array( [X[1], X[3], p_s] ) / X[5]
dXds[0] = dtds*beta[0]
dXds[2] = dtds*beta[1]
dXds[1] = p_s/self.ring.ringRadius + self.ring.particle.charge*(dtds*E[0] + dXds[2]*B[2] - h*B[1])
dXds[3] = self.ring.particle.charge*(dtds*E[1] + h*B[0] - dXds[0]*B[2])
dXds[4] = dtds
dXds[5] = self.ring.particle.charge*(dXds[0]*E[0] + dXds[2]*E[1] + h*E[2])
return dXds
cpdef np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] odeSolve(self,
np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] X0,
np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] sRange):
sol = odeint(self.equations, X0, sRange)
return sol
@cython.boundscheck(False)
cdef class Ring:
cdef Particle particle
cdef double ringRadius
cdef double magicB0
def __init__(self, particle):
self.particle = particle
self.ringRadius = 7.112
self.magicB0 = self.particle.magicMomentum/self.ringRadius
cpdef tuple getEMField(self,
list pos,
double time):
cdef double x, y, s
cdef double theta, r, rn, arg, k2, k10
cdef np.ndarray[np.double_t, ndim=1, negative_indices=False, mode="c"] E, B
x, y, s = pos
theta = (s/self.ringRadius*180/pi) % 360
r = sqrt(x*x + y*y)
arg = 0 if r == 0 else np.angle( complex(x/r, y/r) )
rn = r/0.045
k2 = 37*24e3
k10 = -4*24e3
E = np.zeros(3)
B = np.array( [ 0, self.magicB0, 0 ] )
for i in range(4):
if ((21.9+90*i < theta < 34.9+90*i or 38.9+90*i < theta < 64.9+90*i) and (-0.05 < x < 0.05 and -0.05 < y < 0.05)):
E = np.array( [ k2*x/0.045 + k10*rn**9*cos(9*arg), -k2*y/0.045 -k10*rn**9*sin(9*arg), 0] )
#E = np.array( [ k2*x/0.045, -k2*y/0.045, 0] )
break
return E, B
cdef class Particle:
cdef double mass
cdef double charge
cdef double gm2
cdef double magicMomentum
cdef double magicEnergy
cdef double magicGamma
cdef double magicBeta
def __init__(self):
self.mass = 105.65837e6
self.charge = 1.
self.gm2 = 0.001165921
self.magicMomentum = self.mass/sqrt(self.gm2)
self.magicEnergy = sqrt(self.magicMomentum**2 + self.mass**2)
self.magicGamma = self.magicEnergy/self.mass
self.magicBeta = self.magicMomentum/(self.magicGamma*self.mass)
def runSimulation(nParticles, tEnd):
particle = Particle()
ring = Ring(particle)
integrator = Integrator(ring)
#nParticles = 5
Xs = np.array( [ np.array( [45e-3*(np.random.rand()-0.5)*2, 0, 0, 0, 0, particle.magicEnergy] ) for i in range(nParticles) ] )
sRange = np.arange(0, tEnd, 1e-9)*particle.magicBeta*cLight
ode = partial(integrator.odeSolve, sRange=sRange)
t1 = Time()
pool = mp.Pool()
sol = np.array(pool.map(ode, Xs))
t2 = Time()
print ("%.3f sec" %(t2-t1))
return t2-t1
我应该怎么做才能从 Cython 中获得最大的效果?(我尝试使用 Numba 而不是 Cython,实际上 Numba 带来的性能提升是巨大的(大约 20 倍加速)。但是我很难将 Numba 用于 python 类实例,因此我决定使用 Cython 而不是 Numba)。
最佳答案
这是一个非常不完整的答案,因为我没有分析或计时任何东西,甚至没有检查它是否给出了相同的答案。但是,这里有一些减少 Cython 生成的 Python 代码量的建议:
添加@cython.cdivision(True)
编译指令。这意味着 ZeroDivisionError
不会在浮点除法时引发,您将得到一个 NaN
值。 (仅当您不想引发错误时才这样做)。
将 p_s = np.sqrt(...)
更改为 p_s = sqrt(...)
。这将删除仅对单个值进行操作的 numpy 调用。您似乎在其他地方做过,所以我不知道您为什么错过了这一行。
尽可能使用固定大小的 C 数组而不是 numpy 数组:
cdef double beta[3]
# ...
beta[0] = X[1]/X[5]
beta[1] = X[3]/X[5]
beta[2] = p_s/X[5]
当大小在编译时已知(并且相当小)并且您不想返回它时,您可以这样做。这避免了调用 np.zeros
和一些后续类型检查以将其分配给类型化的 numpy 数组。我认为 beta
是唯一可以执行此操作的地方。
np.angle( complex(x/r, y/r) )
可以替换为 atan2(y/r, x/r)
(使用 libc.math
中的 atan2
。您也可以用 r
cdef int i
有助于加快 getEMField
中的 for
循环(Cython 通常擅长自动获取类型循环变量但似乎在这里失败了)
我怀疑逐个元素分配 E
比整个数组更快:
E[0] = k2*x/0.045 + k10*rn**9*cos(9*arg)
E[1] = -k2*y/0.045 -k10*rn**9*sin(9*arg)
指定 list
和 tuple
这样的类型没有多大值(value),它实际上可能会使代码稍微变慢(因为它会浪费时间检查类型)。
一个更大的变化是将 E
和 B
作为指针传递给 GetEMField
而不是使用分配它们 np .zeros
。这将使您可以将它们分配为 equations
(cdef double E[3]
) 中的静态 C 数组。缺点是 GetEMField
必须是 cdef
,因此不再可从 Python 调用(但如果您愿意,您也可以制作一个 Python 可调用包装函数)。
关于python - Cython对代码的优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47824229/
比较代码: const char x = 'a'; std::cout > (0C310B0h) 00C3100B add esp,4 和 const i
您好,我正在使用 Matlab 优化求解器,但程序有问题。我收到此消息 fmincon 已停止,因为目标函数值小于目标函数限制的默认值,并且约束满足在约束容差的默认值范围内。我也收到以下消息。警告:矩
处理Visual Studio optimizations的问题为我节省了大量启动和使用它的时间 当我必须进行 J2EE 开发时,我很难回到 Eclipse。因此,我还想知道人们是否有任何提示或技巧可
情况如下:在我的 Excel 工作表中,有一列包含 1-name 形式的条目。考虑到数字也可以是两位数,我想删除这些数字。这本身不是问题,我让它工作了,只是性能太糟糕了。现在我的程序每个单元格输入大约
这样做有什么区别吗: $(".topHorzNavLink").click(function() { var theHoverContainer = $("#hoverContainer");
这个问题已经有答案了: 已关闭11 年前。 Possible Duplicate: What is the cost of '$(this)'? 我经常在一些开发人员代码中看到$(this)引用同一个
我刚刚结束了一个大型开发项目。我们的时间紧迫,因此很多优化被“推迟”。既然我们已经达到了最后期限,我们将回去尝试优化事情。 我的问题是:优化 jQuery 网站时您要寻找的最重要的东西是什么。或者,我
所以我一直在用 JavaScript 编写游戏(不是网络游戏,而是使用 JavaScript 恰好是脚本语言的游戏引擎)。不幸的是,游戏引擎的 JavaScript 引擎是 SpiderMonkey
这是我在正在构建的页面中使用的 SQL 查询。它目前运行大约 8 秒并返回 12000 条记录,这是正确的,但我想知道您是否可以就如何使其更快提出可能的建议? SELECT DISTINCT Adve
如何优化这个? SELECT e.attr_id, e.sku, a.value FROM product_attr AS e, product_attr_text AS a WHERE e.attr
我正在使用这样的结构来测试是否按下了所需的键: def eventFilter(self, tableView, event): if event.type() == QtCore.QEven
我正在使用 JavaScript 从给定的球员列表中计算出羽毛球 double 比赛的所有组合。每个玩家都与其他人组队。 EG。如果我有以下球员a、b、c、d。它们的组合可以是: a & b V c
我似乎无法弄清楚如何让这个 JS 工作。 scroll function 起作用但不能隐藏。还有没有办法用更少的代码行来做到这一点?我希望 .down-arrow 在 50px 之后 fade out
我的问题是关于用于生产的高级优化级联样式表 (CSS) 文件。 多么最新和最完整(准备在实时元素中使用)的 css 优化器/最小化器,它们不仅提供删除空格和换行符,还提供高级功能,如删除过多的属性、合
我读过这个: 浏览器检索在 中请求的所有资源开始呈现 之前的 HTML 部分.如果您将请求放在 中section 而不是,那么页面呈现和下载资源可以并行发生。您应该从 移动尽可能多的资源请求。
我正在处理一些现有的 C++ 代码,这些代码看起来写得不好,而且调用频率很高。我想知道我是否应该花时间更改它,或者编译器是否已经在优化问题。 我正在使用 Visual Studio 2008。 这是一
我正在尝试使用 OpenGL 渲染 3 个四边形(1 个背景图,2 个 Sprite )。我有以下代码: void GLRenderer::onDrawObjects(long p_dt) {
我确实有以下声明: isEnabled = false; if(foo(arg) && isEnabled) { .... } public boolean foo(arg) { some re
(一)深入浅出理解索引结构 实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(no
一、写在前面 css的优化方案,之前没有提及,所以接下来进行总结一下。 二、具体优化方案 2.1、加载性能 1、css压缩:将写好的css进行打包,可以减少很多的体积。 2、css单一样式:在需要下边
我是一名优秀的程序员,十分优秀!