- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
(python、机器学习和 TensorFlow 的完全新手)
我正在尝试调整 TensorFlow Linear Model Tutorial从他们的官方文档到 Abalone dataset在 ICU 机器学习库中有特色。目的是根据其他给定数据猜测鲍鱼的年轮(年龄)。
当运行下面的程序时,我得到以下信息:
File "/home/lawrence/tensorflow3.5/lib/python3.5/site-packages/tensorflow /python/ops/lookup_ops.py", line 220, in lookup
(self._key_dtype, keys.dtype))
TypeError: Signature mismatch. Keys must be dtype <dtype: 'string'>, got <dtype: 'int32'>.
错误在 lookup_ops.py 的第 220 行被抛出,并被记录为在以下情况下被抛出:
Raises:
TypeError: when `keys` or `default_value` doesn't match the table data types.
从调试 parse_csv()
看来,所有张量都是用正确的类型创建的。
您能解释一下哪里出了问题吗?我相信我正在遵循教程代码逻辑,但无法解决这个问题。
源代码:
import tensorflow as tf
import shutil
_CSV_COLUMNS = [
'sex', 'length', 'diameter', 'height', 'whole_weight',
'shucked_weight', 'viscera_weight', 'shell_weight', 'rings'
]
_CSV_COLUMN_DEFAULTS = [['M'], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0]]
_NUM_EXAMPLES = {
'train': 3000,
'validation': 1177,
}
def build_model_columns():
"""Builds a set of wide feature columns."""
# Continuous columns
sex = tf.feature_column.categorical_column_with_hash_bucket('sex', hash_bucket_size=1000)
length = tf.feature_column.numeric_column('length', dtype=tf.float32)
diameter = tf.feature_column.numeric_column('diameter', dtype=tf.float32)
height = tf.feature_column.numeric_column('height', dtype=tf.float32)
whole_weight = tf.feature_column.numeric_column('whole_weight', dtype=tf.float32)
shucked_weight = tf.feature_column.numeric_column('shucked_weight', dtype=tf.float32)
viscera_weight = tf.feature_column.numeric_column('viscera_weight', dtype=tf.float32)
shell_weight = tf.feature_column.numeric_column('shell_weight', dtype=tf.float32)
base_columns = [sex, length, diameter, height, whole_weight,
shucked_weight, viscera_weight, shell_weight]
return base_columns
def build_estimator():
"""Build an estimator appropriate for the given model type."""
base_columns = build_model_columns()
return tf.estimator.LinearClassifier(
model_dir="~/models/albones/",
feature_columns=base_columns,
label_vocabulary=_CSV_COLUMNS)
def input_fn(data_file, num_epochs, shuffle, batch_size):
"""Generate an input function for the Estimator."""
assert tf.gfile.Exists(data_file), (
'%s not found. Please make sure you have either run data_download.py or '
'set both arguments --train_data and --test_data.' % data_file)
def parse_csv(value):
print('Parsing', data_file)
columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS)
features = dict(zip(_CSV_COLUMNS, columns))
labels = features.pop('rings')
return features, labels
# Extract lines from input files using the Dataset API.
dataset = tf.data.TextLineDataset(data_file)
if shuffle:
dataset = dataset.shuffle(buffer_size=_NUM_EXAMPLES['train'])
dataset = dataset.map(parse_csv)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
def main(unused_argv):
# Clean up the model directory if present
shutil.rmtree("/home/lawrence/models/albones/", ignore_errors=True)
model = build_estimator()
# Train and evaluate the model every `FLAGS.epochs_per_eval` epochs.
for n in range(40 // 2):
model.train(input_fn=lambda: input_fn(
"/home/lawrence/abalone.data", 2, True, 40))
results = model.evaluate(input_fn=lambda: input_fn(
"/home/lawrence/abalone.data", 1, False, 40))
# Display evaluation metrics
print('Results at epoch', (n + 1) * 2)
print('-' * 60)
for key in sorted(results):
print('%s: %s' % (key, results[key]))
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main=main)
这是来自 abalone.names 的数据集列的分类:
Name Data Type Meas. Description
---- --------- ----- -----------
Sex nominal M, F, [or] I (infant)
Length continuous mm Longest shell measurement
Diameter continuous mm perpendicular to length
Height continuous mm with meat in shell
Whole weight continuous grams whole abalone
Shucked weight continuous grams weight of meat
Viscera weight continuous grams gut weight (after bleeding)
Shell weight continuous grams after being dried
Rings integer +1.5 gives the age in years
数据集条目按此顺序显示为常用分隔值,新条目换行。
最佳答案
您几乎做对了所有事情。问题在于估算器的定义。
任务是预测 Rings
列,它是一个整数,所以它看起来像一个回归 问题。但是你决定做一个分类任务,这也是有效的:
def build_estimator():
"""Build an estimator appropriate for the given model type."""
base_columns = build_model_columns()
return tf.estimator.LinearClassifier(
model_dir="~/models/albones/",
feature_columns=base_columns,
label_vocabulary=_CSV_COLUMNS)
默认情况下,tf.estimator.LinearClassifier
假设二进制分类,即 n_classes=2
。在您的情况下,这显然不是真的 - 这是第一个错误。您还设置了 label_vocabulary
,tensorflow 将其解释为标签列中的一组可能值。这就是为什么它需要 tf.string
dtype。由于 Rings
是一个整数,您根本不需要 label_vocabulary
。
将它们组合在一起:
def build_estimator():
"""Build an estimator appropriate for the given model type."""
base_columns = build_model_columns()
return tf.estimator.LinearClassifier(
model_dir="~/models/albones/",
feature_columns=base_columns,
n_classes=30)
我建议你也试试 tf.estimator.LinearRegressor
,这可能会更准确。
关于python - TensorFlow - `keys` 或 `default_value` 与表数据类型不匹配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48206320/
使用sed和/或awk,仅在行包含字符串“ foo”并且行之前和之后的行分别包含字符串“ bar”和“ baz”时,我才希望删除行。 因此,对于此输入: blah blah foo blah bar
例如: S1: "some filename contains few words.txt" S2:“一些文件名包含几个单词 - draft.txt” S3:“一些文件名包含几个单词 - 另一个 dr
我正在尝试处理一些非常困惑的数据。我需要通过样本 ID 合并两个包含不同类型数据的大数据框。问题是一张表的样本 ID 有许多不同的格式,但大多数都包含用于匹配其 ID 中某处所需的 ID 字符串,例如
我想在匹配特定屏幕尺寸时显示特定图像。在这种情况下,对于 Bootstrap ,我使用 col-xx-## 作为我的选择。但似乎它并没有真正按照我认为应该的方式工作。 基本思路,我想显示一种全屏图像,
出于某种原因,这条规则 RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^(.*
我想做类似的东西(Nemerle 语法) def something = match(STT) | 1 with st= "Summ" | 2 with st= "AVG" =>
假设这是我的代码 var str="abc=1234587;abc=19855284;abc=1234587;abc=19855284;abc=1234587;abc=19855284;abc=123
我怎样才能得到这个字符串的数字:'(31.5393701, -82.46235569999999)' 我已经在尝试了,但这离解决方案还很远:) text.match(/\((\d+),(\d+)\)/
如何去除输出中的逗号 (,)?有没有更好的方法从字符串或句子中搜索 url。 alert(" http://www.cnn.com df".match(/https?:\/\/([-\w\.]+
a = ('one', 'two') b = ('ten', 'ten') z = [('four', 'five', 'six'), ('one', 'two', 'twenty')] 我正在尝试
我已经编写了以下代码,我希望用它来查找从第 21 列到另一张表中最后一行的值,并根据这张表中 A 列和另一张表中 B 列中的值将它们返回到这张表床单。 当我使用下面的代码时,我得到一个工作表错误。你能
我在以下结构中有两列 A B 1 49 4922039670 我已经能够评估 =LEN(A1)如2 , =LEFT(B1,2)如49 , 和 =LEFT(B1,LEN(A1)
我有一个文件,其中一行可以以 + 开头, -或 * .在其中一些行之间可以有以字母或数字(一般文本)开头的行(也包含这些字符,但不在第 1 列中!)。 知道这一点,设置匹配和突出显示机制的最简单方法是
我有一个数据字段文件,其中可能包含注释,如下所示: id, data, data, data 101 a, b, c 102 d, e, f 103 g, h, i // has to do with
我有以下模式:/^\/(?P.+)$/匹配:/url . 我的问题是它也匹配 /url/page ,如何忽略/在这个正则表达式中? 该模式应该: 模式匹配:/url 模式不匹配:/url/page 提
我有一个非常庞大且复杂的数据集,其中包含许多对公司的观察。公司的一些观察是多余的,我需要制作一个键来将多余的观察映射到一个单独的观察。然而,判断他们是否真的代表同一家公司的唯一方法是通过各种变量的相似
我有以下 XML A B C 我想查找 if not(exists(//Record/subRecord
我制作了一个正则表达式来验证潜在的比特币地址,现在当我单击报价按钮时,我希望根据正则表达式检查表单中输入的值,但它不起作用。 https://jsfiddle.net/arkqdc8a/5/ var
我有一些 MS Word 文档,我已将其全部内容转移到 SQL 表中。 内容包含多个方括号和大括号,例如 [{a} as at [b],] {c,} {d,} etc 我需要进行检查以确保括号平衡/匹
我正在使用 Node.js 从 XML 文件读取数据。但是当我尝试将文件中的数据与文字进行比较时,它不匹配,即使它看起来相同: const parser: xml2js.Parser = new
我是一名优秀的程序员,十分优秀!